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Abstract

The well-known classification of the Clifford algebras Cl(r, s) leads to canonical forms of complex and real
representations which are essentially unique by virtue of the Wedderburn theorem. For s � 1 representations
of Cl(r, s) on R2N are obtained from representations on RN by adding two new generators while in passing
from a representation of Cl(p, 0) on RN to a representation of Cl(r, 0) on R2N the number of generators that
can be added is either 1, 2 or 4, according as the Clifford algebra represented on RN is of real, complex
or quaternionic type. We have expressed canonical forms of these representations in terms of the complex
and quaternionic structures in the half dimension and we obtained algorithms for transforming any given
representation of Cl(r, s) to a canonical form. Our algorithm for the transformation of the representations
of Cl(8d + c, 0), c � 7 to canonical forms is based on finding an abelian subalgebra of Cl(8d + c, 0) and
its invariant subspace. Computer programs for determining explicitly the change of basis matrix for the
transformation to canonical forms are given for lower dimensions. The construction of the change of basis
matrices uniquely up to the commutant provides a constructive proof of the uniqueness properties of the
representations and may have applications in computer graphics and robotics.
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1. Introduction

The classification and representation of Clifford algebras is well-known: Any real Clifford
algebraCl(r, s) is isomorphic to one of the matrix algebrasK(2n) ∼= End(K2n

)orK(2n) ⊕ K(2n),
where K is either the reals R, the complex numbers C or the quaternions H [1]. The proof of
the classification theorem is constructive and can be used directly to build real representations
in the case s � 1 while the problem is more tricky for Cl(r, 0). The construction of complex
representations is also straightforward.

The structure of the representations is based on the Wedderburn theorem which states that the
matrix algebras K(N) have a unique representation on the vector space KN [2]. It follows that
the Clifford algebra Cl(r, s) has exactly one or two representations on K2n

, according as it is
isomorphic to K(2n) or to K(2n) ⊕ K(2n). The uniqueness of the representation over K means
that any two representation can be transformed to each other by conjugation with a unique matrix
P with entries in K .

The main result of our paper, given in Section 4, is the construction of an orthonormal basis for
the representation space with respect to which the matrices in any given representation have desired
canonical forms. We use here the word “canonical” for representations expressible as homoge-
neous tensor products of the standard Pauli matrices (Eq. (2.6)). Computer programs leading to
the corresponding change of basis matrix P in lower dimensions are presented in Appendix A.

In Section 2 we give a concise overview of the classification and representation of Clifford
algebras, as the proof of the classification theorem is the key in understanding the construction of
canonical representations. As an immediate corollary of the classification theorem, we give the
formula for the algebraic type of a real representation of Cl(r, s) in terms of r and s (Proposition
2.8), previously obtained using the representation theory of finite groups [3,4].

Note that if a Clifford algebra Cl(r, s) is isomorphic to a matrix algebra over complex or
quaternionic numbers and we use a real representation, then the matrices in the complex or
quaternionic subalgebras will commute with all matrices of the representation. Such matrices are
called the “commutant” [4].

In Section 3 we obtain the relations between maximal Clifford algebras that can be represented
on R2N and the structure of the commutant in the half dimension. The classification theorem states
that the generators of Cl(p, q) can be expressed as a tensor product of the generators of Cl(r, s)

with p + q = r + s + 2 and the generators of Cl(1, 1), Cl(0, 2) or Cl(2, 0) (Lemmas 2.3 and 2.4).
As Cl(1, 1) and Cl(0, 2) have 2-dimensional real representations, the representations of Clifford
algebras Cl(r, s) with s � 1 follow directly from the classification theorem. The difficulty with
the representations of Cl(r, 0) comes from the fact that irreducible representations of Cl(2, 0) are
4-dimensional, hence the addition of 2 or more generators as one doubles the dimension is a non-
trivial problem. In the representations of Cl(r, 0) the number of generators to be added as we dou-
ble the dimension is 1, 2 or 4, depending on whether the representation in the half dimension is real,
complex or quaternionic. It turns out that the possibility of adding more than one generator is due
to existence of this non-trivial commutant. On the other hand, the existence of a non-trivial com-
mutant is tied to the structure of the maximal Clifford algebra Cl(r, s) that can be represented in
the half dimension. Namely, the extendibility of a representation of Cl(8d, 0) to a representation of
Cl(8d, 1) at the same dimension leads to the complex structure for the representations of Cl(8d +
1, 0). Similarly the extendibility of Cl(8d + 1, 0) to Cl(8d + 1, 2) leads to the quaternionic
structure for Cl(8d + 3, 0). The interrelations between these structures are displayed in Table 2.

In Section 4 we study the problem of transforming a given real irreducible representation of
a Clifford algebra to a canonical form. As noted above, the Wedderburn theorem implies that
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if Ai’s and Ãi’s are arbitrary representations of Cl(r, s), there is a matrix P unique up to the
commutant, such that AiP = P Ãi for i = 1, . . . , r + s, but the determination of such a matrix
P is non-trivial especially for the representations of Cl(r, 0). We describe below the difficulties
involved and outline our solution.

Recall that as Cl(1, 1) and Cl(0, 2) have 2-dimensional representations, one can easily con-
struct representations on 2N dimensions with tensor products using representations on N dimen-
sions. The converse problem is to “recognize” the generators of Cl(1, 1) or Cl(0, 2) and express
the remaining elements as tensor products. This is easy because any two anti-commuting elements
in the representation with squares ±I as appropriate (Lemma 4.1), can be put to canonical forms
and any matrix anti-commuting with the two anti-commuting elements has a block-diagonal
structure (Proposition 4.2).

For representations of Cl(r, 0) it is easy to put one generator to a canonical form, but this does
not lead to block-diagonalization. Hence the converse problem is non-trivial even for the case when
only a single generator is added in passing to the double dimension. For transforming the generators
of Cl(r, 0) to canonical forms we shall use an algorithm mimicking the situation for Cl(3, 0). If
A1, A2 and A3 = A1A2 belong to a representation of Cl(3, 0) on R4, they can be transformed to
“canonical” quaternionic structures by choosing a basis {X, −A1X, −A2X, −A1A2X} where X

is an arbitrary unit vector (Proposition 4.5). This construction cannot be used for Cl(r, 0) with
r � 3, because the products of the images of the generators are in general linearly independent
matrices. To apply this procedure to higher dimensions, we find a special vector X and a subalgebra
A generated by a certain subset of the generators such that the action of A on X leads to the
required basis.

To illustrate the procedure, consider a representation of Cl(6, 0) ∼= R(8) on R8. The images
of the standard generators Ai , i = 1, . . . , 6 generate the matrix algebra R(8) in which the diag-
onal matrices constitute an 8-dimensional maximal abelian subalgebra that we denote by D. We
aim to express this abelian subalgebra in terms of the generators of the representation and in
Proposition 4.7 we show that {A1A2A3, A1A4A5, A2A4A6} consisting of matrices with squares
I is a generating set. As a set of commuting diagonalizable matrices, they are simultaneously
diagonalizable and in addition, they have a unique common eigenvector X corresponding to
the eigenvalue 1. As D acts as identity on the one dimensional subspace spanned by X, only
three of the Ai’s i = 1, . . . , 6 are independent and the action of the subalgebra A generated by
{A1, A2, A4} on X generates the required basis. The construction for higher dimensional real
representations is similar, but for complex and quaternionic representations the vector X is not
unique. The uniqueness of the vector X up to the commutant leads to an alternative proof of the
uniqueness of the representations up to the commutant.

With continuing interest in the relations to group representations [5], representations of Clifford
algebras are now finding applications in the field of robotics and computer graphics [6–8]. In these
approaches, the motions of rigid bodies in 3-space are modelled with Clifford algebras of various
types related to quaternions. These Clifford algebras are representable on R8 and the translation
of the data from one coordinate system to another is a basic problem for which the transformation
algorithms given in Appendix A are expected to be useful.

2. Classification and representation of Clifford algebras

In this section we give an overview of the classification and representation of Clifford algebras,
based on the presentation in [1]. In Section 2.1 we introduce the notation and give basic definitions.
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We have also included a section on the classification and representation of complex Clifford
algebras for completeness. In Section 2.3 we give the classification of real Clifford algebras and
we conclude with the determination of the algebraic type of a representation of Cl(r, s) in terms of
r − s and r + s. Propositions 2.7 and 2.8 provide an alternative derivation of some of the results
given in [4].

2.1. Basic definitions

Let V be a vector space over the field k and q be a quadratic form on V . The Clifford algebra
Cl(V, q) associated to V and q is an associative algebra with identity 1, generated by the vector
space V and by the identity, subject to the relations v · v = −q(v)1 for any vector v in V . The
map α(v) = −v for v ∈ V extends to an involution of the Clifford algebra Cl(V, q) and its ±1
eigenvalues are called respectively even and odd parts. Furthermore, the Clifford algebra and the
exterior algebra of V are isomorphic as vector spaces. The order of a Clifford algebra element is
defined as its order as an exterior algebra element.

The real Clifford algebras associated to V = Rr+s and to the quadratic form q(x) =
x2

1 + · · · + x2
r − x2

r+1 − · · · − x2
r+s , is denoted by Cl(r, s). For V = Cn, as all non-degenerate

quadratic forms over Cn are equivalent, q(z) is necessarily q(z) = z2
1 + · · · + z2

n. The correspond-
ing complex Clifford algebra is denoted by Clc(n) [1]. If {e1, e2, . . . , en} is an orthonormal basis
for V , the real Clifford algebra Cl(r, s) is generated by the {ei}’s, subject to the relations,

e2
i = −1, i = 1, . . . , r; e2

r+i = 1, i = 1, . . . , s; eiej + ej ei = 0, i /= j. (2.1)

Similarly, the generators of the complex Clifford algebra Clc(n) satisfy

e2
i = −1, i = 1, . . . , n, eiej + ej ei = 0, i /= j. (2.2)

Both Cl(r, s) with r + s = n and Clc(n) are 2n-dimensional vector spaces spanned by the set

{1, e1, e2, . . . , er+s , e1e2, . . . , er+s−1er+s , e1e2e3, . . . , e1e2e3, . . . , er+s}. (2.3)

If K is a division algebra containing the field k, a K-representation of the Clifford algebra
Cl(V, q) on the finite dimensional K-vector space W , is a k-algebra homomorphism

ρ : Cl(V, q) → HomK(W, W). (2.4)

A representation is called reducible if W can be written as a non-trivial direct sum of ρ invari-
ant subspaces. A representation which is not reducible is called irreducible. It is known that
every K-representation ρ of a Clifford algebra Cl(V, q) can be decomposed into a direct sum
ρ = ρ1 ⊕ · · · ⊕ ρm of irreducible representations.

Two representations ρj : Cl(V, q) → HomK(Wj , Wj ) for j = 1, 2 are said to be equivalent
if there exists a K-linear isomorphism F : W1 → W2 such that F ◦ ρ1(ϕ) ◦ F−1 = ρ2(ϕ) for all
ϕ ∈ Cl(V, q). In particular, for W1 = W2 if two representations are equivalent, ρ2(φ) is obtained
from ρ1(φ) for each φ in Cl(V, q), by conjugation with the same matrix.

The algebra of linear endomorphisms of KN , End(KN), is denoted by K(N). It is known that
these matrix algebras are simple and have a unique representation up to equivalence [2]. This
result known as the Wedderburn theorem also determines the structure of the representations of
Clifford algebras.

Proposition 2.1 (Wedderburn theorem). Let K = R, C or H and consider the ring K(N) of
N × N matrices as an algebra over R. Then the natural representation ρ of K(N) on the vec-
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tor space KN is, up to equivalence, the only irreducible representation of K(N). The algebra
K(N) ⊕ K(N) has exactly two irreducible representations given by

ρ1(φ1, φ2) = ρ(φ1), ρ2(φ1, φ2) = ρ(φ2), (2.5)

where ρ is the natural representation.

We give below certain isomorphisms that are needed in proofs.

Proposition 2.2 (Proposition 4.2 in [1]). There are isomorphisms

R(n) ⊗R R(m) ∼= R(nm), R(n) ⊗R K ∼= K(n), K = C, H,

C ⊗R C ∼= C ⊕ C, C ⊗R H ∼= C(2), H ⊗R H ∼= R(4),

(K(n) ⊕ K(n)) ⊗K K(m) ∼= K(nm) ⊕ K(nm), K = R, C.

Finally we present our notation. In 2-dimensions the standard Pauli matrices are denoted as

σ =
(

1 0
0 −1

)
, ε =

(
0 1

−1 0

)
, τ =

(
0 1
1 0

)
(2.6)

and their multiplication rules are

στ = ε, σε = τ, ετ = σ. (2.7)

The tensor products are expressed as

σ ⊗ a =
(

a 0
0 −a

)
, ε ⊗ b =

(
0 b

−b 0

)
, τ ⊗ c =

(
0 c

c 0

)
. (2.8)

For simplicity of notation, in tensor products, identity matrices of any size will be denoted by
1 unless the distinction is important. Also by abuse of language, the images of the generators of
a Clifford algebra under a representation are called the generators of the representation.

2.2. Complex Clifford algebras

We give the classification and representation of complex Clifford algebras.

Lemma 2.3. For all n � 0, there are isomorphisms

Clc(n + 2) ∼= Clc(2) ⊗C Clc(n), (2.9a)

Clc(2n) ∼= C(2n), Clc(2n + 1) ∼= C(2n) ⊕ C(2n). (2.9b)

Proof. Let ej , j = 1, . . . , n be the generators of Clc(n), and let e′
1 and e′

2 be the generators of
Clc(2). Then

ẽj = ie′
1e

′
2 ⊗ ej , j = 1, . . . , n, ẽn+1 = e′

1 ⊗ 1, ẽn+2 = e′
2 ⊗ 1 (2.10)

is a set of generators for Clc(n + 2), hence Eq. (2.9a) is proved. Eq. (2.9b) follows from Eq. (2.9a)
and from the fact that Clc(1) ∼= C ⊕ C and Clc(2) ∼= C(2), using the isomorphisms in Proposition
2.2. �
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As there is a 2-periodicity, the construction of the representations is straightforward. Starting
with a representation of Clc(3) on C2 as

ρ(e1) = i

(
0 1
1 0

)
, ρ(e2) =

(
0 1

−1 0

)
, ρ(e3) = i

(
1 0
0 −1

)
(2.11)

and given any representation of Cl(n) on CN , an irreducible representation of Clc(n + 2) can
be obtained by replacing the generators with their representations in the proof of Lemma 2.3.
Namely, if ρ(ej ) = aj , j = 1, . . . , n is a representation on RN , then

ρ(̃ej ) = iσ ⊗ aj =
(

aj 0
0 −aj

)
, ρ(̃en+1) = ε ⊗ 1 =

(
0 1

−1 0

)
,

ρ(̃en+2) = iτ ⊗ 1 = i

(
0 1
1 0

)
(2.12)

gives a representation on R2N .
If Cl(r, s) is a Clifford algebra isomorphic to C(2n), it will have an irreducible representation

on R2n+1
. These representations can be obtained from a complex representation on C2n

once
the complex structure is known. This provides an alternative method for the construction of
representations of Cl(8d + 1, 0), because the product of the generators is an odd Clifford algebra
element which is central, hence it is the complex structure J (see Proposition 4.4).

2.3. Real Clifford algebras

The crucial step in the classification of real Clifford algebras is the isomorphism theorem
below.

Lemma 2.4 (Theorem 4.1 in [1]). There are isomorphisms

Cl(1, 1) ⊗ Cl(r, s) ∼= Cl(r + 1, s + 1), (2.13a)

Cl(0, 2) ⊗ Cl(r, s) ∼= Cl(s, r + 2), (2.13b)

Cl(2, 0) ⊗ Cl(r, s) ∼= Cl(s + 2, r) (2.13c)

for all r, s � 0.

Proof. The generators of Cl(r, s) with squares −1 are denoted by ai and the ones with square
+1 by bi . Let (a′

1, b
′
1), (a′

1, a
′
2), (b′

1, b
′
2) be the generators of Cl(1, 1), Cl(2, 0) and Cl(0, 2),

respectively. Note that as a2
i = −1, b2

i = 1 and as they form an anti-commuting set, (a′
1b

′
1)

2 = 1
while, (a′

1a
′
2)

2 = (b′
1b

′
2)

2 = −1. Thus there will be a twisting whenever a Clifford algebra element
of Cl(r, s) is tensored with an element of Cl(2, 0) or Cl(0, 2). Thus

(a′
1b

′
1 ⊗ ai)

2 = −1, (a′
1b

′
1 ⊗ bi)

2 = 1,

(a′
1a

′
2 ⊗ ai)

2 = 1, (a′
1a

′
2 ⊗ bi)

2 = −1,

(b′
1b

′
2 ⊗ ai)

2 = 1, (b′
1b

′
2 ⊗ bi)

2 = −1. (2.14)
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Hence the generators of Cl(r + 1, s + 1) can be obtained easily as

ãi = a′
1b

′
1 ⊗ ai, i = 1, . . . , r, ãr+1 = a′

1 ⊗ 1,

b̃i = a′
1b

′
1 ⊗ bi, i = 1, . . . , s, b̃s+1 = b′

1 ⊗ 1. (2.15)

A similar construction works for Cl(s, r + 2) with a twisting. The standard generators are obtained
as

ãi = b′
1b

′
2 ⊗ bi, i = 1, . . . , s,

b̃i = b′
1b

′
2 ⊗ ai, i = 1, . . . , r, b̃r+1 = b′

1 ⊗ 1, b̃r+2 = b′
2 ⊗ 1. (2.16)

Finally the generators of Cl(s + 2, r) are also obtained with a twist as

ãi = a′
1a

′
2 ⊗ bi, i = 1, . . . , s, ãs+1 = a′

1 ⊗ 1, ãs+2 = a′
2 ⊗ 1,

b̃i = b′
1b

′
2 ⊗ ai, i = 1, . . . , r. (2.17)

and the proof is completed. �

The proofs of the isomorphisms (2.13a) and (2.13b) lead directly to the construction of real
representations of Cl(r, s) for s /= 0. However the construction of the real representations of
Cl(r, 0) is not a direct consequence of the proof of (2.13c), because the generators of Cl(2, 0)

are represented by 4 × 4 matrices.
The Clifford algebras Cl(n, 0) and Cl(0, n) for n � 8 as given in [1, Section 1, Table 1] in

proving Proposition 2.6, and can be read off from Eqs. (2.19a–h) we do not list them here.
Iterating the isomorphisms in Lemma 2.4, we can obtain the “periodicity isomorphisms”

(Theorem 4.3, in [1]) as follows.

Proposition 2.5. There are isomorphisms

Cl(0, n + 8) ∼= Cl(0, n) ⊗ Cl(0, 8), (2.18a)

Cl(n + 8, 0) ∼= Cl(n, 0) ⊗ Cl(8, 0), (2.18b)

Cl(r + 8d, s) ∼= Cl(r, s + 8d) ∼= Cl(r, s) ⊗ R(24d), r, s � 7, (2.18c)

Cl(n + r, n + s) ∼= Cl(r, s) ⊗ R(2n), r, s � 7. (2.18d)

We can then obtain the classification of Cl(r, s) as

Proposition 2.6. There are isomorphisms

Cl(n, n) ∼= R(2n), (2.19a)

Cl(n, n + 1) ∼= R(2n) ⊕ R(2n), Cl(n + 1, n) ∼= C(2n), (2.19b)

Cl(n, n + 2) ∼= R(2n+1), Cl(n + 2, n) ∼= H(2n), (2.19c)

Cl(n, n + 3) ∼= C(2n+1), Cl(n + 3, n) ∼= H(2n) ⊕ H(2n), (2.19d)

Cl(n, n + 4) ∼= H(2n+1), Cl(n + 4, n) ∼= H(2n+1), (2.19e)

Cl(n, n + 5) ∼= H(2n+1) ⊕ H(2n+1), Cl(n + 5, n) ∼= C(2n+2), (2.19f)

Cl(n, n + 6) ∼= H(2n+2), Cl(n + 6, n) ∼= R(2n+3), (2.19g)

Cl(n, n + 7) ∼= C(2n+3), Cl(n + 7, n) ∼= R(2n+3) ⊕ R(2n+3). (2.19h)
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Proof. From Eq. (2.13a) of Lemma 2.4, Cl(n, n) ∼= Cl(n − 1, n − 1) ⊗ Cl(1, 1). Then (2.19a)
can be proved by induction using the isomorphism Cl(1, 1) ∼= R(2). The proofs of (2.19b–h) are
similar. �

The isomorphisms (2.19a–h) can be rearranged in the format below.

Proposition 2.7. The Clifford algebras Cl(r, s) are isomorphic to either of the matrix algebras
R(2n), R(2n) ⊕ R(2n), C(2n), H(2n) or H(2n) ⊕ H(2n) according to the values of r and s as
given below:

R(2n) : s + r = 2n, s − r = 0, 2 (mod 8), (2.20a)

R(2n) ⊕ R(2n) : s + r = 2n + 1, s − r = 1 (mod 8), (2.20b)

C(2n) : s + r = 2n + 1, s − r = 3, 7 (mod 8), (2.20c)

H(2n) : s + r = 2n + 2, s − r = 4, 6 (mod 8), (2.20d)

H(2n) ⊕ H(2n) : s + r = 2n + 3, s − r = 5 (mod 8). (2.20e)

Recall that a Clifford algebra isomorphic to K(n) or K(n) ⊕ K(n) is called respectively of
real, complex or quaternionic type, according as K = R, K = C or K = H. The discussion
above, together with Proposition 2.5, leads to the classification of the type of the representation
according to the values of s − r (mod 8). A proof of this theorem is given in [3, 4], using finite
group representations. The result below follows immediately from the classification theorem.

Proposition 2.8. The Clifford algebrasCl(r, s)are of real, complex or quaternionic types, respec-
tively according as s − r = 0, 1, 2, s − r = 3, 7 or s − r = 4, 5, 6 (mod 8).

Remark 2.9. The maximal number of linearly independent vector fields on the sphere SN−1 is
known as the Radon–Hurwitz number k(N) computed as follows. If N = (2a + 1)24d+c, c =
0, 1, 2, 3, then k(N) = 8d + 2c − 1. By Proposition 7.1 in [1], representations of Cl(r, 0) on
RN give linearly independent vector fields on SN−1, hence the irreducible representations of
Cl(k(N), 0) are N -dimensional.

3. Canonical forms of representation

In this section we obtain canonical expressions for the representations of Cl(r, s), in the sense of
homogeneous tensor products of two dimensional representations of the standard generators. We
prefer to work with a form where the generators coming from the half dimension are represented
by block diagonal matrices while it would as well be possible to represent them with off diagonal
blocks.

The constructions for s � 1 given in Section 3.2 are straightforward, while the constructions for
Cl(r, 0) are non-trivial and closely related to the commutants of representations in half dimensions.

3.1. Preliminaries

A representation of the Clifford algebra Cl(r, s) on RN determines an r + s-dimensional
subspace in End(RN) ∼= R(N). The images of the standard generators are linear transformations
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with square ±I . We first note that without loss of generality one can represent the standard
generators with symmetric or skew-symmetric matrices [1, Proposition 5.16].

Proposition 3.1. Let Ai , i = 1, . . . , r + s be an anti-commuting set of endomorphisms of RN

satisfying A2
i = εI where ε = ±1. There is an inner product on RN with respect to which Ai’s

are skew symmetric or symmetric, according as ε = −1 or ε = 1.

Proof. Let (X, Y ) denote the standard inner product on RN and define a new inner product

〈X, Y 〉 = (X, Y ) +
∑

i

(AiX, AiY ) +
∑
i<j

(AiAjX, AiAjY )

+
∑

i<j<k

(AiAjAkX, AiAjAkY ) + · · ·

+
∑

i1<···<ir+s

(Ai1 . . . Air+s X, Ai1 . . . Air+s Y ).

It can be checked that if A2
i = εI , then 〈AiX, Y 〉 − ε〈X, AiY 〉 = 0, hence Ai is symmetric or

skew-symmetric and the proposition is proved. �

Let S(N) be the set of matrices in R(N) with minimal polynomial A2 + λI = 0, where λ can
be positive, negative or zero. If λ is positive, as complex eigenvalues occur in conjugate pairs, the
eigenspaces of A have equal dimension and A is trace zero. However, for λ zero or negative (or
for complex representations) this is no longer true. Nevertheless we show that if at least two such
matrices lie in the same linear subspace their eigenspaces have the same dimension and they are
trace zero.

Lemma 3.2. Let A and B be 2n × 2n matrices satisfying A2 + λI = 0, B2 + µI = 0, λ /= 0, µ /=
0, and AB + BA = 0. Then the eigenspaces of A and B have equal dimension.

Proof. We may assume that A is in Jordan canonical form over C, i.e. A = √−λ

(
Ip 0
0 −Iq

)
with p + q = 2n, where p and q may be unequal. Multiple by B the equation AB + BA = 0 and
take its trace to get 0 = 2 tr(AB2) = −2µ tr(A). Here we used the fact that tr(BAB) = tr(AB2).
This shows that tr(A) = 0 and hence, p = q. Similar argument on B shows Lemma 3.2. �

An important implication of this result is the following.

Corollary 3.3. Let Ai i = 1, . . . , n, n � 2 be a set of anti-commuting matrices with A2
i = ±I.

Then tr(Ai) = 0 for i = 1, . . . , n.

The Clifford algebras that can be represented at the same dimension are shown in Table 1,
which is the classification table in [1], where we joined the cells to display the Clifford algebras
that are represented at the same dimension. Given an irreducible representation of Cl(r, s) on
RN , if no new generator can be added without increasing the dimension, the representation is
called maximal. For example the representations of Cl(7, 0), Cl(3, 4) and Cl(4, 1) on R8 are
all maximal. If Cl(p, q) is not maximal, then the set of generators that can be added to get a
representation on the same dimension is called complementary generators. Note that the set of
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complementary generators is not unique. For example starting with a representation of Cl(2, 0)

on R4, one can either add one complementary generator with negative square to get Cl(3, 0), or
three complementary generators with positive squares to get Cl(2, 3).

Table 1
The list of Clifford algebras that can be represented on the same dimension
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In the construction of canonical representations, if r and s are both non-zero, one can move
diagonally backwards on Table 1, constructing representations of Cl(r, s) in terms of the represen-
tations of Cl(r − 1, s − 1), while on the vertical edge of Table 1, the representations of Cl(0, s)

with s � 2 can be obtained from the representations of Cl(s − 2, 0). These constructions are
trivial, as one just replaces the standard generators with their 2-dimensional representations.
Hence the non-trivial part is to give representations of Cl(r, 0) in terms of a representation in half
dimension.

3.2. Representations of Cl(r, s) with s � 1

We now give the representations of Cl(r, s) with s � 1 on R2N in terms of the representations
of Cl(r − 1, s − 1) or Cl(s − 2, r) on RN .

Proposition 3.4. Let ρ be a real representation of the Clifford algebra Cl(r, s) on RN and let ai, bi

be the canonical generators of the representation, let Ai, Bi be the complementary generators
satisfying

a2
i + I = 0, A2

i + I = 0, b2
i − I = 0, B2

i − I = 0

and let Ji be the generators of the maximal commuting subalgebra. Then

(i) the canonical generators, the complementary generators and the generators of the maximal
commuting subalgebra of the representation of Cl(r + 1, s + 1) on R2N are given by

ãi = σ ⊗ ai, b̃i = σ ⊗ bi, b̃s+1 = τ ⊗ 1, ãr+1 = ε ⊗ 1,

Ãi = σ ⊗ Ai, B̃i = σ ⊗ Bi,

J̃i = 1 ⊗ Ji, (3.1)

(ii) the canonical generators, the complementary generators and the generators of the maximal
commuting subalgebra of the representation of Cl(s, r + 2) on R2N are given by

ãi = ε ⊗ bi, b̃i = ε ⊗ ai, b̃r+1 = σ ⊗ 1, b̃r+2 = τ ⊗ 1,

Ãi = ε ⊗ Bi, B̃i = ε ⊗ Ai,

J̃i = 1 ⊗ Ji. (3.2)

3.3. Representations of Cl(r, 0)

We have summarized the structure of the maximal representations of Cl(8d + c, 0) for c =
0, 1, 3, 7 in Table 2 where it can be seen that when in passing from a representation of real type on
N dimensions to a maximal representation in 2N dimensions, there is always a single generator
to be added, which can be chosen in the form ε ⊗ IN . On the other hand when the representation
in the half dimension is complex with complex a structure J , we see that one can add ε ⊗ IN

and τ ⊗ J , while on quaternionic backgrounds with quaternionic structures Ji , i = 1, 2, 3 one
can add ε ⊗ IN and τ ⊗ Ji . On the other hand the existence of the complex or quaternionic
structures is related to the complementary generators with positive squares that can be added
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Table 2
Construction of the generators, commutant and complementary generators of the representation of Cl(r, 0) in terms of
the data in half dimension

Clifford algebra Cl(8d,0) Cl(8d+1,0) Cl(8d+3,0) Cl(8d+7,0)

Representation space R24d
R24d+1

R24d+2
R24d+3

Generators a
(n)
i

: b
(n)
i

: c
(n)
i

: d
(n)
i

:
σ ⊗ d(n−1) σ ⊗ a

(n)
i

σ ⊗ b
(n)
i

σ ⊗ c
(n)
i

ε ⊗ I (n−1) ε ⊗ I (n) ε ⊗ I (n) ε ⊗ I (n)

τ ⊗ J (n) τ ⊗ J
(n)
1

τ ⊗ J
(n)
2

τ ⊗ J
(n)
3

Commutant – J (n) = ε ⊗ α(n) J
(n)
1 = 1 ⊗ J (n)

– – J
(n)
2 = ε ⊗ β

(n)
1

– – J
(n)
3 = ε ⊗ β

(n)
2

Complementary α(n) = τ ⊗ I (n−1) β
(n)
1 = τ ⊗ I (n)

Generators β
(n)
2 = σ ⊗ α(n)

to the representation without increasing the dimension. We denote the representation in the half
dimension as the “background”.

Representation of Cl(8n, 0) on R24n
: We start with a representation of Cl(8n, 0) on R24n

. The
representation is real, hence the maximal commuting subalgebra is R, generated by the identity
only. Cl(8n, 0) can be extended to Cl(8n, 1) hence there is a single complementary generator.
The data of the representation is below.

Canonical generators : a
(n)
i , i = 1, . . . , 8n, (3.3a)

Complementary generator : α(n). (3.3b)

Representation of Cl(8n + 1, 0) on R24n+1
: From the data above we can obtain the representa-

tions of Cl(8n + 1, 0) on double dimension. The representation is complex and extendible to a
representation of Cl(8n + 1, 2).

Canonical generators : b
(n)
i = σ ⊗ a

(n)
i , i = 1, . . . , 8n,

b
(n)
8n+1 = ε ⊗ I. (3.4a)

Generator of the commutant : J (n) = ε ⊗ α(n). (3.4b)

Complementary generators : β
(n)
1 = τ ⊗ I,

β
(n)
2 = σ ⊗ α(n). (3.4c)

Note that increasing the number of generators by 1 is trivial, it is sufficient to tensor the old
generators by say σ (tensoring with τ would work as well) and add the generator ε ⊗ 1. The
change of the type from real to complex is tied to the existence of a complementary generator as
follows. A matrix which commutes with ε ⊗ 1 has to be either ε ⊗ b or 1 ⊗ c, where b is symmetric
and c is skew-symmetric. But if 1 ⊗ c commutes with σ ⊗ ai , then aic − cai = 0, which is not
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possible because the background is of real type. On the other hand if ε ⊗ b commutes with σ ⊗ ai ,
then bai + aib = 0, and as the background admits a complementary generator, it is possible to
choose J = ε ⊗ Ai . The existence of one complementary generator, namely τ ⊗ 1 is trivial. The
existence of a second one is again tied to the existence of the complementary generator in the
background.

Representation of Cl(8n + 3, 0) on R24n+2
: In passing from representations of Cl(8n + 1, 0) to

the representations of Cl(8n + 3, 0), the background is of complex type with the commutant
constructed as above.

Canonical generators : c
(n)
i = σ ⊗ b

(n)
i , i = 1, . . . , 8n + 1,

c
(n)
8n+2 = ε ⊗ I,

c
(n)
8n+3 = τ ⊗ J (n), (3.5a)

Generators of the commutant : J
(n)
1 = 1 ⊗ J (n),

J
(n)
2 = ε ⊗ β

(n)
1 ,

J
(n)
3 = ε ⊗ β

(n)
2 . (3.5b)

As J commutes with the bi’s we can add the canonical generator τ ⊗ J which anti-commutes
with σ ⊗ bi and ε ⊗ 1. Since the image is quaternionic, we should construct the commutant. As
above, candidates for the commutant are 1 ⊗ c and ε ⊗ b. It can be seen that as the background
is complex, c = J is possible, hence the matrices of the quaternionic structure, commuting every
canonical generator, are ε ⊗ β8n+1. As the representation is maximal, there are no complementary
generators.

Representation of Cl(8n + 7, 0) on R24n+3
: In this case the background is quaternionic and the

dimension of the linear subspace should increase by 4. The ci’s form an anti-commuting set
while the Ji’s anti-commute among each other but commute with all the ci’s. Thus in the double
dimension we have the representations ε ⊗ 1, σ ⊗ ci and τ ⊗ Ji . The canonical generators are
thus

Canonical generators : d
(n)
i = σ ⊗ c

(n)
i , i = 1, . . . , 8n + 3,

d
(n)
8n+4 = ε ⊗ I,

d
(n)
8n+5 = τ ⊗ J

(n)
1 ,

d
(n)
8n+6 = τ ⊗ J

(n)
2 ,

d
(n)
8d+7 = τ ⊗ J

(n)
3 . (3.6a)

The representation is real and maximal. Hence the maximal commuting subalgebra is generated
by the identity only and there are no complementary generators.

Representation of Cl(8n + 8, 0) on R24n+4
: Here there is a single generator to be added. As the rep-

resentation is real, the commutant is generated by the identity and there is a single complementary
generator.
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Canonical generators : a
(n+1)
i = σ ⊗ d

(n)
i , i = 1, . . . , 8n + 7,

a
(n+1)
8n+8 = ε ⊗ I. (3.7a)

Complementary generator : α(n+1) = τ ⊗ I. (3.7b)

These results are summarized in below and in Table 2.

Proposition 3.5. Let di, i = 1, . . . , 8(n − 1) + 7 be a set of generators for a representation of
Cl(8(d − 1) + 7, 0) on RN. Then the set of canonical generators, the commutant and complemen-
tary generators of representations of Cl(8d, 0), Cl(8d + 1, 0), Cl(8d + 3, 0) and Cl(8d + 7, 0)

are determined in terms of these as given in Table 2.

The product of the generators of a Clifford algebra is called the “volume element” and denoted
by ω. The structure of the volume element in Cl(r, s) is useful in working with iterative construc-
tions. We first quote below the following result.

Proposition 3.6 (Proposition 3.3 in [1]). Let {e1, . . . , er+s} be an orthonormal set of generators
for Cl(r, s) and let ω = e1, . . . , er+s . Then

ω2 = (−1)
n(n+1)

2 +s , (4.4)

where n = r + s. Furthermore, for n odd, ω is a central element in Cl(r, s) while for n even,

ϕω = ωα(ϕ), for all ϕ ∈ Cl(r, s), (4.5)

where α(ϕ) = ±ϕ respectively for even and odd elements.

It follows that when ω is central ρ(ω) belongs to the commutant and it can be checked that
for ω2 = 1, ρ(ω) = I while for ω2 = −1, ρ(ω) is pure imaginary. Thus for Cl(8d + 3, 0) and
Cl(8d + 7, 0), as ω2 = 1 and ω is a central element, hence ρ(ω) has to be proportional to identity
and the choice of the sign leads to inequivalent representations. In our canonical representation,

the product of the generators of Cl(3, 0) is −1, and we stick with this convention. The general
form of the volume elements can be obtained as follows.

Proposition 3.7. Let a
(d)
i , b

(d)
i , c

(d)
i and d

(d)
i be canonical generators as given in Table 2, and

assume that c
(0)
1 c

(0)
2 c

(0)
3 = −I. Then for all d,

8d∏
i

ai = τ ⊗ 1,

8d+1∏
i

bi = ε ⊗ τ

8d+3∏
i

ci = −I,

8d+7∏
i

di = I.

Proof. From Table 2, it is easy to see that
∏8d

i ai = (σ ⊗ 1)(ε ⊗ 1) = τ ⊗ 1. Then
∏8d+1

i bi =
(1 ⊗ τ)(ε ⊗ 1) = ε ⊗ τ . The proofs of the remaining products are similar. �

4. Transformation to canonical forms

In Section 3 we have given the construction of canonical forms recursively, starting from lower
dimensions. Here we consider the converse problem: Given an orthonormal basis for the image of
V ⊂ Cl(r, s) in RN , find an orthonormal basis for RN with respect to which the matrices of the
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basis elements have desired canonical forms. From the Wedderburn theorem, we know that such
a basis is unique for Clifford algebras of real type, while it is determined up to the commutants
for Clifford algebras of complex and quaternionic types.

We would like to start by noting that although the existence of the change of basis matrix is
guaranteed by the Wedderburn theorem, its direct determination is not practically feasible. If an
anti-commuting set of matrices with squares −I is given, it is in principle possible to put them
to canonical forms iteratively by restricting the change of basis matrix P at each step, but this
procedure gives non-linear equations for the components of P and is not useful beyond a set of
just two matrices.

It is clear that if Cl(r, s) has an irreducible representation on RN , then any reducible representa-
tion on RkN is block diagonal: One chooses N linearly independent vectors with respect to which
the given matrices have desired forms and then apply Gram–Schmidt orthogonalization procedure
to obtain a direct sum splitting and reiterate. Henceforth we consider irreducible representations
only.

We start with the representations of Cl(r, s) with s � 1 in Section 4.1. Section 4.2 is devoted to
a detailed the study of the representations of Cl(7, 0) and the general results are given in Section
4.3.

4.1. Representations of Cl(r, s) with s � 1

We have seen that a representation of Cl(r, s) with s � 1 can be constructed by tensoring with
the representations in half dimension with σ and adding two new generators ε ⊗ 1 and σ ⊗ 1.

In the transformation of a given representation to a canonical one we follow the reverse path.
Assume that we know how to transform a given representation of Cl(r, s) on RN to a canonical
form. For Cl(r + 1, s + 1) we want to identify one generator with negative square as ε ⊗ 1 and
another with positive square as τ ⊗ 1. Once we find a basis with respect to which two generators
have matrices ε ⊗ 1 and τ ⊗ 1, the remaining ones will be automatically of the form Ai = σ ⊗ ai ,
as they should anti-commute with both ε ⊗ 1 and τ ⊗ 1. The situation is similar for representations
of Cl(r, s + 2) where we identify two generators with positive squares as σ ⊗ 1 and τ ⊗ 1. We
thus start with proving the following Lemma.

Lemma 4.1. Let A, B, C be a set of trace zero anti-commuting linear transformations with

A2 + I = 0, B2 − I = 0, C2 − I = 0. (4.1)

Then, there are orthonormal bases of R2N with respect to which

(i) B = σ ⊗ I, C = τ ⊗ I,

(ii) A = ε ⊗ I, B = σ ⊗ I,

(iii) A = ε ⊗ I, B = τ ⊗ I.

Proof. As A, B and C are trace zero, the ±1 and ±i eigenspaces are N -dimensional. Thus one
can take A = ε ⊗ I or B = σ ⊗ I . We give the proof of (i) as an example. Let X1, . . . , XN be an
orthonormal basis for the +1 eigenspace of B and define Yi = CXi . Computing BYi and CYi it
can be seen that B and C have desired canonical forms. The proofs of (ii) and (iii) are similar. �

It follows that given a representation of Cl(r, s) with r � 1 and s � 1 or for s � 2, one can move
diagonally backwards in constructing the representations.
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Proposition 4.2. Let A1, . . . , Ar , B1, . . . , Bs belong to a an irreducible representation of Cl(r, s)

on R2N with A2
i + I = 0, B2

j − I = 0 and assume that the transformation of a given representa-

tion to canonical forms is known on RN. Then, there is an orthonormal basis of R2N with respect
to which

(i) If r � 1, s � 1,

Ar = ε ⊗ I, Bs = τ ⊗ I, Ai = σ ⊗ ai, i = 1, . . . , r − 1,

Bj = σ ⊗ bj , j = 1, . . . , s − 1. (4.2a)

(ii) If s � 2,

Bs = σ ⊗ I, Bs−1 = τ ⊗ I, Ai = ε ⊗ bi, i = 1, . . . , s − 2,

Bj = ε ⊗ aj , j = 1, . . . , r, (4.2b)

where

a2
i + I = 0, b2

j − I = 0.

Proof. For (i), using Lemma 4.1(iii), one can choose an orthonormal basis {X1, . . . , XN, Y1, . . . ,

YN } with respect to which Ar and Bs have matrices ε ⊗ I and τ ⊗ I . Then any matrix in the
representation which anti-commutes with these has to be of the form σ ⊗ a, with a2 = −I or
σ ⊗ b, with b2 = I . By assumption, the transformations in N dimensions are known, hence we
can put the remaining in canonical forms by orthogonal transformations on {X1, . . . , XN }. The
proof of (ii) is similar, but there is a twisting as in the proof of the construction of canonical
forms. �

This complete the discussion for the case s � 1. Although the case s = 0 will be discussed
in the following section we complete this section with two remarks on canonical forms for
Cl(r, 0).

Remark 4.3. Lemma 4.1 can be used to transform representations of Cl(r + 1, 0) to canonical
forms once the transformation for Cl(r, 0) in half dimension is known and a complementary
generator can be identified. This will be the case for r = 8d as Proposition 3.6 implies that the
volume element has square I and is not central.

Remark 4.4. Cl(8d + 1, 0) is of complex type and from Proposition 3.6 it can be seen that the
product of the generators is a central element with square −I , hence it is just J .

4.2. Representations of Cl(r, 0) for r = 3, 7

We start by giving the construction of canonical bases for Cl(3, 0) and Cl(7, 0). For Cl(3, 0)

the generators form a copy of the quaternionic subalgebra and we obtain the standard generators
as in Proposition 4.5 below.
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Representations of Cl(3, 0):

Proposition 4.5. Let A1, A2, A3 be an anti-commuting set of skew-symmetric endomorphisms in
R(4) with squares −I and assume that A1A2A3 = −I. Let X be a unit vector in R4 and define

X1 = X, X2 = −A1X, X3 = −A2X, X4 = −A1A2X. (4.6)

Then {X1, X2, X3, X4} is an orthonormal set with respect to which the matrices of Ai, i = 1, 2, 3
are

A1 =




0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0


 , A2 =




0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0




A3 =




0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0


 . (4.7)

Proof. Using skew-symmetry and anti-commutativity, it is easy to check that the set {X, A1X,

A2X, A1A2X} is orthonormal. Then by relabelling these vectors, the matrices of A1 and A2 are
of the form A1 = σ ⊗ ε and A2 = ε ⊗ 1, as above. The form of A3 follows from the fact that
A3 = A1A2. �

Representations of Cl(7, 0): The key fact in the construction above is that the triple product
A1A2A3 is proportional to identity. A similar approach does not work for the representations
of Cl(7, 0), because the set consisting of the canonical generators and their products is linearly
independent, consequently, none of the triple products is proportional to identity. Nevertheless,
we show that these triple products contain an 8-dimensional abelian subalgebra consisting of
simultaneously diagonalizable matrices with a common eigenvector corresponding to the eigen-
value 1. Hence, all triple products are proportional to identity on this one dimensional subspace
and lead to the desired orthonormal basis. For this we need to determine conditions under which
Clifford algebra elements commute.

Lemma 4.6. Let e1, . . . , er+s be an orthonormal set of generators of Cl(r, s) and let ω and η be
Clifford algebra elements of orders a + b and a + c of the form

ω = ei1ei2 . . . eia+b
, η = ej1ej2 . . . eja+c .

If ω and η have a common factor of order a, then

ωη = (−1)ab+ac+bcηω. (4.8)

Proof. Without loss of generality we can write ω = αβ and η = αγ , where α, β and γ are disjoint.
Then the usual rules of exterior algebra applies and we obtain the result. �

As an immediate application we can see that a collection of odd Clifford algebra elements with
odd order common factor form an abelian subalgebra. Hence we have the following.
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Proposition 4.7. Let Ai , i = 1, . . . , 7 be an anti-commuting set of skew-symmetric endomor-
phisms in R(8) with squares −I and assume that A1A2 . . . A7 = I. Then the subgroup generated
by

µ1 = A1A2A3, µ2 = A1A4A5, µ3 = A2A4A6 (4.9)

is abelian and have exactly one common eigenvector X with eigenvalue +1. Hence the set

{A123, A145, A167, A246, A257, A347, A356, I }, (4.10)

where Aijk = AiAjAk is a maximal abelian subalgebra.

Proof. From Lemma 4.6 it follows that distinct triple products commute if and only if they have
exactly one common element. Thus the collection given in Eq. (4.10) is an abelian subalgebra
which is clearly maximal in 8-dimensions, since they generate all diagonal matrices. As this is
a commuting set of diagonalizable matrices, they can be simultaneously diagonalized. We have
to be careful with the ordering of the factors to make sure that they have a common eigenvector
with eigenvalue 1. For this we define a commuting set of generators µi as in Eq. (4.9). Then, it
can be seen that

µ1µ2 = A1A2A3A1A4A5 = −A2A3A4A5 = −A1A6A7,

where the first equality is obtained by anti-commutativity and using that A2
1 = −I , for the second

equality uses the fact that the product is equal to I . Similarly we can obtain

µ1µ3 = A2A5A7, µ2µ3 = A3A4A7, µ1µ2µ3 = −A3A5A6.

Note that the image of (µi + I ) is the +1 eigenspace of µi . Thus if µ1, µ2, µ3 had no common
eigenvector with eigenvalue 1, the product

(µ1 + I )(µ2 + I )(µ3 + I ) = I + µ1 + µ2 + µ3 + µ1µ2 + µ1µ3

+ µ2µ3 + µ1µ2µ3 (4.11)

would be identically zero. From Corollary 3.3, each triple product is trace zero, but the product
in Eq. (4.11) cannot have trace zero, hence it is non-zero. Thus they have a common eigenvector
X corresponding to the eigenvalue +1.

Let A be the subalgebra generated by {A1, A2, A4}. It can be seen that A acting on X gives
a linearly independent set of vectors in R8 and as A is eight dimensional, X belongs to a one
dimensional subspace. �

Once we find this preferred direction X on which the seven triple products act as identity, it is
easy to construct the required orthonormal basis.

Remark 4.8. From a computational point of view, given any basis for a representation, one
can use Gram–Schmidt orthogonalization to obtain an orthonormal anti-commuting set with
squares −I and form the symmetric matrices µ1, µ2 and µ3 as above. Then in 8-dimensions, the
matrix (µ1 + I )(µ2 + I )(µ3 + I ) has rank 1, and any of its columns yield the preferred direction
without any need for eigenvalue computation. This is achieved in OCTAVE with the command
X = orth(Q) which gives an orthonormal basis for the range space of any matrix Q.

We will give in detail the construction of the orthonormal basis.
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Proposition 4.9. Let Ai, i = 1, . . . , 7 be an anti-commuting set of skew-symmetric endomor-
phisms in R(8) with squares −I, and let X be a common eigenvector of µ1 = A1A2A3, µ2 =
A1A4A5, µ3 = A2A4A6 with eigenvalue 1. Then, with respect to the basis

{X, A1X, A2X, . . . , A7X} (4.12)

the linear transformations Ai have matrices

A1 = −σ ⊗ σ ⊗ ε, A2 = −σ ⊗ ε ⊗ 1, A3 = −σ ⊗ τ ⊗ ε, A4 = −ε ⊗ 1 ⊗ 1,

A5 = −τ ⊗ 1 ⊗ ε, A6 = −τ ⊗ ε ⊗ σ, A7 = −τ ⊗ ε ⊗ τ. (4.13)

Proof. As the triple products in the subalgebra generated by the µi’s act as identity on X we can
compute the action of all double products as

A1A2X = −A3X, A2A4X = −A6X, A3A7X = A4X,
A1A3X = A2X, A2A5X = −A7X, A4A5X = −A1X,
A1A4X = −A5X, A2A6X = A4X, A4A6X = −A2X,
A1A5X = A4X, A2A7X = A5X, A4A7X = −A3X,
A1A6X = A7X, A3A4X = −A7X, A5A6X = A3X,
A1A7X = −A6X, A3A5X = A6X, A5A7X = −A2X,
A2A3X = −A1X, A3A6X = −A5X, A6A7X = A1X.

Using the above relations we can compute the action of the Ai’s on the basis vectors as given in
Table 3 from which it can be seen that the linear transformation have their matrices in the desired
form with respect to this basis. �

4.3. Representations of Cl(8d + c, 0), for d � 1

Now we give constructions for Cl(8d + c, 0) for d � 1. The first step is to get an abelian sub-
algebra of Cl(8d + c, 0). We start with determining a maximal abelian subalgebra of Cl(8d, 0).

Lemma 4.10. Let

A
(1)
1 , . . . , A

(1)
8 , A

(2)
1 , . . . , A

(d)
8 (4.14)

be generators of Cl(8d, 0) ∼= R(28d). Cl(8d, 0) have an abelian subalgebraDwith 4d generators
where µ

(i)
j , i = 1, . . . , d, j = 1, . . . , 4 given by

µ
(1)
1 = A

(1)
1 A

(1)
2 A

(1)
3 , µ

(1)
2 = A

(1)
1 A

(1)
4 A

(1)
5 , µ

(1)
3 = A

(1)
2 A

(1)
4 A

(1)
6 ,

µ
(1)
4 = A

(1)
1 A

(1)
2 A

(1)
3 A

(1)
4 A

(1)
5 A

(1)
6 A

(1)
7 ,

. . . . . .

µ
(d)
1 = ω(d−1)A

(d)
1 A

(d)
2 A

(d)
3 , µ

(d)
2 = ω(d−1)A

(d)
1 A

(d)
4 A

(d)
5 ,

µ
(d)
3 = ω(d−1)A

(d)
2 A

(d)
4 A

(d)
6 ,

µ
(d)
4 = ω(d−1)A

(d)
1 A

(d)
2 A

(d)
3 A

(d)
4 A

(d)
5 A

(d)
6 A

(d)
7 (4.15)

and

ω(k) = A
(1)
1 . . . A

(1)
8 A

(2)
1 . . . A

(k−1)
1 . . . A

(k−1)
8 . (4.16)

D is maximal and has a one dimensional invariant subspace corresponding to the eigenvalue +1.
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Table 3
The action of the generators of Cl(7, 0) on the basis given by Eq. (4.12)

X A1X A2X A3X A4X A5X A6X A7X

A1: A1X −X −A3X A2X −A5X A4X A7X −A6X

A2: A2X A3X −X −A1X −A6X −A7X A4X A5X

A3: A3X −A2X A1X −X −A7X A6X −A5X A4X

A4: A4X A5X A6X A7X −X −A1X −A2X −A3X

A5: A5X −A4X A7X −A6X A1X −X A3X −A2X

A6: A6X −A7X −A4X A5X A2X −A3X −X A1X

A7: A7X A6X −A5X −A4X A3X A2X −A1X −X

Proof. The generators given in Eq. (4.15) form an abelian subalgebra as each of the µ
(i)
j ’s is

and odd algebra element they have odd common factors. As D is isomorphic to the subal-
gebra generated by diagonal matrices in R(24d) it is maximal. The proof of the existence of
a common eigenvector and its uniqueness is similar to the proof of Proposition 4.9. and it is
omitted. �

The abelian subalgebras of Cl(8d + c, 0) is constructed similarly but they are not maximal
unless Cl(8d + c, 0) is of real type and their invariant subspaces is 2 or 4-dimensional according
as they are of complex or quaternionic type.

Lemma 4.11. Let A
(1)
1 , . . . , A

(1)
8 , A

(2)
1 , . . . , A

(d)
8 , A1, . . . , Ac be generators of Cl(8d + c, 0)

and let µ
(i)
j be as in Lemma 4.10 and let D be an abelian subalgebra of Cl(8d + c, 0). Then

for c = 1, . . . , 3, c = 4, c = 5 and c = 6, 7,D have respectively 4d, 4d + 1, 4d + 2 and 4d + 3
generators given by

c = 0, 1, 2, 3 : µ
(1)
1 , . . . , µ

(d)
4 ,

c = 4 : µ
(1)
1 , . . . , µ

(d)
4 , µ4d+1 = ω(d)A1A2A3,

c = 5 : µ
(1)
1 , . . . , µ

(d)
4 , µ4d+1 = ω(d)A1A2A3, µ4d+2 = ω(d)A1A4A5,

c = 6, 7 : µ
(1)
1 , . . . , µ

(d)
4 , µ4d+1 = ω(d)A1A2A3, µ4d+2 = ω(d)A1A4A5,

µ4d+3 = ω(d)A2A4A6. (4.17)

The invariant subspace of D corresponding to the eigenvalue +1 is one, two or four dimensional
respectively for c = 0, 6, 7, c = 1, 5 and c = 2, 3, 4.

Proof. The generators in Eq. (4.17) are commutative as they are odd algebra elements with odd
common factors. For c = 6, 7, D has 4d + 3 generators in R(24d+3), hence it is isomorphic to
the diagonal subalgebra and the invariant subspace of D is one dimensional. The dimension of
other invariant subspaces can be determined by similar counting arguments. �

Let X be a unit vector belonging to the invariant subspace ofD corresponding to the eigenvalue
+1. The action of D on X is freely generated by a subset of 4d + j , j = 0, 1, 2, 3 generators.
We call these as “free generators” and denote the subalgebra they generate by A. We show that
the action of A on X is the required basis.
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Remark 4.12. As the Clifford algebras Cl(8d + 3, 0) and Cl(8d + 7, 0) are isomorphic to a
direct sum, their representations respectively on R24d+2

and R24d+3
are not faithful and the product

of all generators is identity. Hence we can omit the last generator and work with the representations
of Cl(8d + 2, 0) and Cl(8d + 6, 0). In Proposition 4.13 below we do not discuss the cases c = 3
and c = 7.

We now determine the set of free generators corresponding to D.

Proposition 4.13. LetD be the maximal abelian subalgebra of the Clifford algebra Cl(8d + c, 0)

and let X be a common eigenvector of D corresponding to the eigenvalue +1. Then there are
4d, 4d + 1, 4d + 2 and 4d + 3 free generators, respectively for c = 0, c = 1, c = 2, and c =
4, 5, 6, given by

c = 0 : A
(1)
1 , A

(1)
2 , A

(1)
4 , A

(1)
8 , . . . , A

(d)
1 , A

(d)
2 , A

(d)
4 , A

(d)
8 ,

c = 1 : A
(1)
1 , A

(1)
2 , A

(1)
4 , A

(1)
8 , . . . , A

(d)
1 , A

(d)
2 , A

(d)
4 , A

(d)
8 , A1,

c = 2 : A
(1)
1 , A

(1)
2 , A

(1)
4 , A

(1)
8 , . . . , A

(d)
1 , A

(d)
2 , A

(d)
4 , A

(d)
8 , A1, A2,

c = 4, 5, 6 : A
(1)
1 , A

(1)
2 , A

(1)
4 , A

(1)
8 , . . . , A

(d)
1 , A

(d)
2 , A

(d)
4 , A

(d)
8 , A1, A2, A4. (4.18)

Proof. As the µ
(i)
k acting on X is identity, one of the A

(i)
j ’s in each of them can be considered

as generated by the other two. Eliminating these we arrive at the set given by Eq. (4.18) as free
generators. �

We have thus an algorithm for constructing an orthonormal basis with respect to which a
given representation will have canonical forms. The tools developed here can be used for the
problem of transformation a given set of matrices between different reference frames which may
have applications in robotics and computer graphics. In the appendix we give OCTAVE (a Linux
shareware package similar to MATLAB) programs for the transformations.

Appendix A

OCTAVE programs for the transformation of arbitrary representations to canonical forms.

Canonical forms for a single generator: Let B be an endomorphism of R2N with B2 − I = 0.
Then B has exactly N eigenvectors corresponding to the eigenvalues ±1. Let X+ = orth(B + I )

and X− = orth(B − I ). These are 2N × N matrices and if P = [X+ X−] then BP = Pσ and
if P = [X+ BX+] then BP = Pτ .

Similarly if A is a real endomorphism of R2N with A2 + I = 0, then A has exactly N eigen-
vectors corresponding to the eigenvalues ±i. Let X+ = orth(A + iI ) and X− = orth(A − iI ). If
P = [X+ X−] then AP = iPσ and if P = 1√

2
[X+ + iX− − iX+ − X−] then AP = ε.

Canonical forms for two generators: Let A, B be anti-commuting endomorphism of R2N with
A2 + I = 0 and B2 − I = 0 and let X = orth(B + I ). If P = [X − AX] then BP = Pσ and
AP = Pε.

Similarly if P = 1√
2
[X + AX X − AX] then BP = Pτ and AP = Pε. In this case as the only

matrix anti-commuting with ε and τ is σ , the remaining endomorphisms Ai in the representation
are automatically of the form σ ⊗ ai .
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If B and C are anti-commuting endomorphisms with squares +I and X = orth(B + I ) then
P = [X CX] results in BP = Pσ, CP = Pτ . It follows that the remaining endomorphisms Ai

in the representation are automatically of the form ε ⊗ ai .

Representation of Cl(7, 0): Let the representation of the basis elements be A1, A2, . . . , A7. Then
the generators of abelian subalgebra are given by

µ1 = A1A2A3, µ2 = A1A4A5, µ3 = A2A4A6 (A.1a)

and rank((µ1 + 1)(µ2 + 1)(µ3 + 1)) = 1. The common eigenvector with eigenvalue +1 is

X = orth((µ1 + 1)(µ2 + 1)(µ3 + 1)). (A.1b)

The action of Cl(7, 0) on X is generated by A1, A2, A4 and the transformation matrix is

P (7) = {X A1X A2X A3X A4X A5X A6X A7X}. (A.1c)

Here the product of the generators is identity and all triples products appear in the abelian
subalgebra.

Representation of Cl(8, 0): Let the generators of the representation be A1, A2, . . . , A7, A8. Then
the abelian subalgebra is generated by µi, i = 1, 2, 3 and

µ4 = A1A2A3A4A5A6A7 (A.2a)

with rank((µ1 + 1)(µ2 + 1)(µ3 + 1)(µ4 + 1)) = 1. The common eigenvector with eigenvalue
+1 is

X = orth((µ1 + 1)(µ2 + 1)(µ3 + 1)(µ4 + 1)). (A.2b)

The action of Cl(8, 0) on X is generated by A1, A2, A4, A8 and the transformation matrix is

P (8) = {P (7) A8P
(7)}. (A.2c)

Representation of Cl(9, 0): Let the generators of the representation be A1, A2, . . . , A7, A8, A9.
The abelian subalgebra is generated by µi , i = 1, . . . , 4 as before but now rank((µ1 + 1)(µ2 +
1)(µ3 + 1)(µ4 + 1)) = 2. The common eigenvectors with eigenvalue +1 will belong to the 2-
dimensional subspace

[XaXb] = orth((µ1 + 1)(µ2 + 1)(µ3 + 1)(µ4 + 1)). (A.3a)

If X is any unit vector in the span of Xa, Xb, then the action of Cl(9, 0) on X is generated by
A1, A2, A4, A8, A9 and the transformation matrix is

P (9) = {P (8) A9P
(8)}. (A.3b)

Representation of Cl(11, 0): Let the generators of the representation be A1, A2, . . . , A7, A8, A9,

A10, A11. The abelian subalgebra are again generated by µi , i = 1, . . . , 4 and rank ((µ1 +
1)(µ2 + 1)(µ3 + 1)(µ4 + 1)) = 4. The common eigenvectors with eigenvalue +1 will belong
to the 4-dimensional space

[XaXbXcXd ] = orth((µ1 + 1)(µ2 + 1)(µ3 + 1)(µ4 + 1)). (A.4a)

If X is any unit vector in the span of Xa, Xb, Xc, Xd , then the action of Cl(11, 0) on X is
generated by A1, A2, A4, A8, A9, A10 and the transformation matrix is

P (11) = {P (9) A10P
(9)}. (A.4b)
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Representation of Cl(15, 0): Let the generators of the representation be A1, A2, . . . , A15. Note
that the product of all generators is identity, hence once we put the first 14 generators in the
required form, the last one will automatically be in the desired format. The maximal abelian
subalgebra is generated by µi , i = 1, . . . , 4 as above and

µ5 = A1A2A3A4A5A6A7A8A9A10A11,

µ6 = A1A2A3A4A5A6A7A8A9A12A13,

µ7 = A1A2A3A4A5A6A7A8A10A12A14 (A.5a)

with rank((µ1 + 1)(µ2 + 1)(µ3 + 1)(µ4 + 1)(µ5 + 1)(µ6 + 1)(µ7 + 1)) = 1. The common
eigenvectors with eigenvalue +1 is

X = orth((µ1 + 1)(µ2 + 1)(µ3 + 1)(µ4 + 1)(µ5 + 1)(µ6 + 1)(µ7 + 1)). (A.5b)

The action of Cl(15, 0) on X is generated by A1, A2, A4, A8, A9, A10, A12 and the transformation
matrix is

P (15) = {P (11) A12P
(11)}. (A.5c)
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