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It is known that the complex spin group Spin(n, C) is the universal covering group of complex
orthogonal group SO(n, C). In this work we construct a new kind of spinors on some classes of
Kahler–Norden manifolds. The structure group of such a Kahler–Norden manifold is SO(n, C)
and has a lifting to Spin(n, C). We prove that the Levi-Civita connection on M is an SO(n, C)-
connection. By using the spinor representation of the group Spin(n, C), we define the spinor bundle
S on M . Then we define covariant derivative operator ∇ on S and study some properties of ∇.
Lastly we define Dirac operator on S.

Keywords: Spinor; Norden metric; anti-Kahler; complex orthogonal group; spin structure; complex
spin group.

1. Introduction

Manifolds equipped with additional geometric structures occur in many cases in differential
geometry. For example Riemannian, semi-Riemannian, almost complex structures and spin
structures are important geometric structures on manifolds. On an n-dimensional manifold
M , the existence of additional structures is related to the reduction of structure group
from GL(n,R) to a subgroup G ⊂ GL(n,R). The most important structure groups are
O(n), SO(n), O(p, q), SO(p, q), GL(n,C), U(n), SU(n). The groups O(n,C) and SO(n,C)
are subgroups of GL(2n,R) and they have escaped from our attention in general.

A Kahler manifold can be defined as a triple (M,J, g) where M is a smooth manifold,
J an almost complex structure on M , g a Riemannian metric on M with the hermitian
property g(JX, JY ) = g(X,Y ) for any X,Y ∈ X (M) and J is parallel with respect to the
Levi-Civita connection ∇g, that is ∇gJ = 0. Kahler manifolds are being studied widely
in differential geometry ([9]). In this work we consider slightly different family of almost
complex manifolds, namely, Kahler–Norden manifolds. By a Kahler–Norden manifold we
mean a triple (M,J, g) which consists of a smooth manifold M , an almost complex struc-
ture J on M , and a semi-Riemannian metric g on M with the anti-hermitian property
g(JX, JY ) = −g(X,Y ) for any X,Y ∈ X (M) and J is parallel with respect to the Levi-
Civita connection ∇g, that is ∇gJ = 0. Note that a Kahler–Norden manifold M must be
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even dimensional, say 2n, and the anti-hermitian property g(JX, JY ) = −g(X,Y ) implies
that the signature of g is of type (n, n). This kind of manifolds have been also studied
under the names: almost complex manifolds with Norden (or B−) metric, anti-kahlerian
manifolds (see [1, 6, 12]). The structure group of a Kahler–Norden manifold is the complex
orthogonal group O(n,C).

2. The Spinor Representation

For more detailed explanation of the following facts see e.g. [2, 4, 10]. Spinors are geomet-
ric objects on manifolds like tensors and have various applications in mathematics and
mathematical physics. In the classical theory, for the construction of spinor one use the
spinor representation of the spin group Spin(n). In this work we construct similar objects
on a certain class of Kahler–Norden manifolds. To achieve this we use the spinor repre-
sentation of the complex spin group Spin(n,C) which is comes from the representation of
complex Clifford algebra Cln. The complex Clifford algebra Cln and its representation are
well described in literature [10]. If n = 2k is even then Cl2k � C(2k), if n = 2k + 1 is odd
then Cl2k+1 � C(2k) ⊕ C(2k). When n = 2k or n = 2k + 1 the vector space C2k

is called
vector space of complex n-spinors and denoted by ∆n. Using this notation we can write
Cl2k � End(∆n) and Cl2k+1 � End(∆n) ⊕ End(∆n).

Denote by κn the so-called spinor representation of the Clifford algebra Cln. In case of
even dimension n = 2k, κn is the isomorphism from Cln to End(∆n). If n = 2k + 1 is odd,
then κn is the composition of the isomorphism from Cln to End(∆n) ⊕ End(∆n) with the
projection from End(∆n) ⊕ End(∆n) onto first component End(∆n). Thus ∆n become a
module over the complex Clifford algebra Cln.

It is clear that SO(n) ⊂ SO(n,C) and Spin(n) ⊂ Spin(n,C). It is known that all of
these groups are connected. The fundamental groups of the orthogonal groups SO(n) and
SO(n,C) are the same, namely π1(SO(n)) = π1(SO(n,C)) = Z2 (n ≥ 2) and the fundamen-
tal groups of both real and complex spin groups is trivial. The maps Ad : Spin(n) → SO(n)
by Adg(v) = gvg∗ for g ∈ Spin(n), v ∈ Rn and Ad : Spin(n,C) → SO(n,C) by
Adg(v) = gvg∗ for g ∈ Spin(n,C), v ∈ Cn are onto group homomorphisms with kernel
{±1}. Thus Spin(n) is the universal covering group of SO(n) and Spin(n,C) is the univer-
sal covering group of SO(n,C). In this work we mainly deal with the groups SO(n,C) and
Spin(n,C).

The restriction of κn to Spin(n) ⊂ Cln gives a group homomorphism κ = κn :
Spin(n) → Aut(∆n) called spinor representation of Spin(n). Similarly the restriction of
κn to Spin(n,C) ⊂ Cln gives a group homomorphism κ = κn : Spin(n,C) → Aut(∆n)
called spinor representation of Spin(n,C). Some properties of the spinor representation of
Spin(n,C) are as follows: (see [4])

(i) If n = 2k + 1 is odd then κ is irreducible.
(ii) If n = 2k is even then the spinor space ∆2k decomposes into two subspaces ∆2k =

∆+
2k ⊕ ∆−

2k and dim∆+
2k = dim∆−

2k = 2k−1. From this decomposition one get new
representations κ+ : Spin(2k,C) → End(∆+

2k) and κ− : Spin(2k,C) → End(∆−
2k). Both

of these representations are irreducible.
(iii) If n = 2k + 1 is odd and k ≡ 0, 3 (mod 4) then there is a non-degenerate symmetric

bilinear form on ∆2k+1 and the spinor representation κ takes value in the complex
orthogonal group SO(2k,C) that is κ : Spin(2k + 1,C) → SO(2k,C).
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(iv) If n = 2k + 1 is odd and k ≡ 1, 2 (mod 4) then there is a non-degenerate skew-
symmetric bilinear form on ∆2k+1 and the spinor representation κ takes value in the
complex symplectic group Sp(2k,C) that is κ : Spin(2k + 1,C) → Sp(2k,C).

(v) If n = 2k is even and k ≡ 0 (mod 4) then there is a non-degenerate symmetric bilinear
form on ∆+

2k and the spinor representation κ+ takes value in the complex orthogonal
group SO(2k−1,C) that is κ : Spin(2k,C) → SO(2k−1,C).

(vi) If n = 2k is even and k ≡ 2 (mod 4) then there is a non-degenerate skew-symmetric
bilinear form on ∆+

2k and the spinor representation κ+ takes value in the complex
symplectic group Sp(2k−1,C) that is κ : Spin(2k,C) → Sp(2k−1,C).

The Lie algebra spin(n,C) of the complex spin group Spin(n,C) lives in Cln and it is
very similar to the Lie algebra of the real spin group Spin(n), and given by

spin(n,C) = Lin{eiej : 1 ≤ i < j ≤ n}.
Then the differential of the map Ad : Spin(n,C) → SO(n,C) is a map Ad∗ : spin(n,C) →
so(n,C) defined by Ad∗(eiej) = 2Eij , where Eij are basis for so(n,C).

3. Kahler–Norden Spin Manifolds

In this work we consider 2n-dimensional manifold M with structure group SO(n,C) ⊂
GL(2n,R). Since SO(n,C) ⊂ O(n,C) = GL(n,C) ∩ O(n, n), the manifold M can be
endowed with a complex structure J and a semi-Riemannian metric g with signature (n, n).
It can be also checked that

g(JX, JY ) = −g(X,Y )

for all vector fields X,Y on M . Additionally if the condition ∇gJ = 0 holds, that is J is
parallel with respect to Levi-Civita connection ∇g, then M is a Kahler–Norden manifold
and we denote it by (M,J, g). More informations about these manifolds can be found in
([11,12]).

Theorem 1. Let (M,J, g) be a Kahler–Norden manifold. The Levi-Civita connection ∇g

is an SO(n,C)-connection. That is, the local connection forms ωα take their values in the
Lie algebra so(n,C).

Spin manifolds constitute an important class of manifolds ([10]). In the present paper we
consider a similar but different class of manifolds. Let M be a 2n-dimensional differentiable
manifold with structure group SO(n,C), then there is an open covering {Uα}α∈A of M and
transition functions gαβ : Vα ∩ Vβ → SO(n,C) for TM . If there exists another collection of
transition functions

g̃αβ : Uα ∩ Uβ → Spin(n,C)

such that following diagram commutes

Spin(n,C)

Ad 2:1
��

Uα ∩ Uβ

egαβ

������������

gαβ

�� SO(n,C)
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that is Ad ◦ g̃αβ = gαβ and the cocycle condition g̃αβ g̃βγ = g̃αγ on Uα ∩ Uβ ∩ Uγ is satis-
fied then M is called a Kahler–Norden spin manifold. Then one can construct a principal
Spin(n,C)−bundle PSpin(n,C) on M and a 2 − 1 bundle map Λ : PSpin(n,C) → PSO(n,C).

We stated in Theorem 1 that the connection form ωα of ∇g takes value in the Lie algebra
so(n,C). If Uβ is another coordinate trivializing neighborhood for TM with Uα ∩ Uβ �= ∅
then following relation holds between the connection forms ωα and ωβ:

ωβ = g−1
αβωαgαβ + g−1

αβdgαβ

where gαβ : Uα ∩ Uβ → SO(n,C) is transition function. These so(n,C) valued 1-forms
determine a connection 1-form ω on the principal bundle PSO(n,C) with values in so(n,C).
Now we define a connection 1-form Z on the principal bundle PSpin(n,C) with values in the
Lie algebra spin(n,C) by using following diagram

TPSpin(n,C)
Z ��

Λ∗
��

spin(n,C)

λ∗
��

TPSO(n,C) ω
�� so(n,C)

Note that the equality

ω ◦ Λ∗ = Ad∗ ◦ Z

holds.

4. Spinor Bundle on Kahler–Norden Manifolds

The spinor bundle S on a 2n-dimensional Kahler–Norden spin manifold M is defined as the
associated vector bundle

S = PSpin(n,C) ×κ ∆n

where κ : Spin(n,C) → Aut(∆n) is the spinor representation of Spin(n,C). In case n = 2k,
this vector bundle splits into the sum of two subbundles S+, S−:

S = S+ ⊕ S−, S± = PSpin(n,C) ×κ± ∆±
n

The composite map ρ ◦Ad : Spin(n,C) → Aut(R2n) is a representation of Spin(n,C) on
R2n and gives

PSpin(n,C) ×ρ◦Ad R
2n 
 TM .

Such interpretations of tangent bundle enable us to product the elements of spinor bundle
with tangent vectors by the formula

[p, v] · [p, φ] = [p, κ(v)φ]

where p ∈ PSpin(n,C), v ∈ R2n, φ ∈ ∆n. Since the spinor representation is Spin(n,C)-
equivariant, the definition of product is independent from the representatives. This product
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is bilinear, so we extend it the tensor product space

TM ⊗ S → S,

[p, v] ⊗ [p, φ] = [p, κ(v)φ],

we denote it as a map µ : TM ⊗ S → S and call it Clifford multiplication.
We want to define a covariant derivative operator on the spinor bundle S. A section

Φ ∈ Γ(S) is called a spinor field on M . Since S is an associated vector bundle, any spinor
field Φ can be identified with the mapping Φ̂ : PSpin(n,C) → ∆n obeying the transformation
rule Φ̂(pg) = κ(g−1)Φ̂(p). Such maps are called equivariant.

The connection 1-form Z on the principal bundle PSpin(n,C) determines a covariant
derivative operator ∇ on the spinor bundle S = PSpin(n,C) ×κ ∆n. Let X ∈X (M). The
operator

∇X : Γ(S) → Γ(S),

given by (∇XΦ̂)(p) = (dΦ̂)p(X∗
p ) is a covariant derivative on the spinor bundle, where Φ̂ :

PSpin(n,C) → ∆n is an equivariant map associated to the spinor field Φ ∈ Γ(S), p ∈ PSpin(n,C)

and X∗
p is the horizontal lift of Xp in Horp(PSpin(n,C)) (see [3, 8]). It can be expressed as

∇XΦ̂ = dΦ̂(X) + κ1∗(Z(X∗))Φ̂

where κ1∗ : spin(n,C) → End(∆n) is the derivative of κ at identity 1 ∈ Spin(n,C). It can
be also shown that κ1∗(eiej) = κ(eiej).

We can write the covariant derivative operator ∇ locally as follows: Let s : U → PSO(n,C)

be a local section of the frame bundle PSO(n,C). s consists of orthonormal frame s =
{e1, e2, . . . , en, Je1, Je2, . . . , Jen} of vector fields defined on the open set Uα ⊂ M . We
know that the local connection form ωα is given by the formula

ωα(X) =
∑
i<j

(wij(X) − iw̃ij(X))Eij

where wij and w̃ij denote the forms defining the Levi-Civita connection, wij(X) =
g(∇Xej, ei), w̃ij(X) = −g(∇Xej , Jei), and Eij ∈ so(n,C) are the standard basis matri-
ces of the Lie algebra so(n,C). Let s̃ : Uα → PSpin(n,C) be a lift of s to the 2-fold covering
Λ : PSpin(n,C) → PSO(n,C). Then the local connection forms of Z are given by

Zα(X) =
1
2

∑
i<j

(wij(X) − iw̃ij(X))eiej

and

κ∗(Zα(X)) =
1
2

∑
i<j

(wij(X) − iw̃ij(X))κ∗(eiej)

κ∗(Zα(X)) =
1
2

∑
i<j

(wij(X) − iw̃ij(X))κ(eiej).

Let Φ ∈ Γ(S) be a spinor field and Φ̂ : PSpin(n,C) → ∆n be associated equivariant map, and
consider the composition Φs = Φ̂ ◦ s̃ : Uα → ∆n, then we can write Φ(x) = [s̃(x),Φs(x)] for
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each x ∈ Uα. Hence we can express the covariant derivative of spinors by the formula

∇XΦ =


s̃, dΦs(X)+

1
2

∑
i<j

(wij(X) − iw̃ij(X))κ(eiej)Φs




such expression will be useful for our computations (see [7]).
In the classical theory of spin manifolds, there is a hermitian inner product on the spinor

bundle, but in our case there is no such inner product. Instead, one can define some special
forms on the spinor bundle S.

Theorem 2. Let M be an 2n-dimensional Kahler–Norden spin manifold and S be spinor
bundle on M .

(i) If n = 2k + 1 is odd and k ≡ 1, 2 (Mod 4), then there is a non-degenerate skew-
symmetric bilinear form F, so called symplectic form, on the spinor bundle S with
values in C.

(ii) If n = 2k is even and k ≡ 0 (Mod 4), then there is a non-degenerate symmetric bilinear
form B on the spinor bundle S+ with values in C.

(iii) If n = 2k is even and k ≡ 2 (Mod 4), then there is a non-degenerate skew-symmetric
bilinear form F, so called symplectic form, on S+ with values in C.

Proof. Recall S = PSpin(n,C) ×κ ∆n and S+ = PSpin(n,C) ×κ+ ∆+
n .

(i) For [p, ψ1], [p, ψ2] ∈ S, we set

F ([p, ψ1], [p, ψ2]) = ε(ψ1, ψ2)

where ε is the standard symplectic form on ∆n. Since the spinor representation κ of
Spin(n,C) is symplectic, above equation defines a symplectic form on S.

(ii) For [p, ψ1], [p, ψ2] ∈ S+, we set

B([p, ψ1], [p, ψ2]) = b(ψ1, ψ2)

where b is the standard symmetric bilinear form on ∆n. Since the spinor representation
κ+ of Spin(n,C) is orthogonal, above equation defines a symmetric bilinear form on S+.

(iii) Similar to the case (i).

The following theorem states that the forms F and B are compatible with the
connection ∇.

Theorem 3.

(i) For any X ∈ Γ(TM) and Φ,Ψ ∈ Γ(S),

X(F (Φ,Ψ)) = F (∇XΦ,Ψ) + F (Φ,∇XΨ).

(ii) For any X ∈ Γ(TM) and Φ,Ψ ∈ Γ(S+),

X(B(Φ,Ψ)) = B(∇XΦ,Ψ) +B(Φ,∇XΨ).
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Proof. (i) With respect to a local section s : Uα → PSpin(n,C), we have

F (∇XΦ,Ψ) + F (Φ,∇XΨ)

= ε


dΦs(X) +

1
2

∑
i<j

(ωij(X) − iw̃ij(X))κ(eiej)Φs,Ψ




+ ε


Φs, dΨs(X) +

1
2

∑
i<j

(ωij(X) − iw̃ij(X))κ(eiej)Ψs)




= ε(dΦs(X),Ψs) +
1
2

∑
i<j

(ωij(X) − iw̃ij(X))ε(κ(eiej)Φs,Ψs)

+ ε(Φs, dΨs(X)) +
1
2

∑
i<j

(ωij(X) − iw̃ij(X))ε(Φs, κ(eiej)Ψs))

= ε(dΦs(X),Ψs) + ε(Φs, dΨs(X))

= Xε(Φs,Ψs).

(ii) With respect to a local section s : Uα → PSpin(n,C), we have

B(∇XΦ,Ψ) +B(Φ,∇XΨ)

= b


dΦs(X) +

1
2

∑
i<j

(ωij(X) − iw̃ij(X))κ+(eiej)Φs,Ψs




+ b


Φs, dΨs(X) +

1
2

∑
i<j

(ωij(X) − iw̃ij(X))κ+(eiej)Ψs)




= b(dΦs(X),Ψs) +
1
2

∑
i<j

(ωij(X) − iw̃ij(X))b(κ+(eiej)Φs,Ψs)

+ b(Φs, dΨs(X)) +
1
2

∑
i<j

(ωij(X) − iw̃ij(X))b(Φs, κ
+(eiej)Ψs))

= b(dΦs(X),Ψs) + b(Φs, dΨs(X))

= Xb(Φs,Ψs).

Now we want to define the Dirac operator on the spinor bundle S. The connection ∇ on S
can be thought as a map linear map

∇ : Γ(S) → Γ(T ∗M ⊗ S)

satisfies the following Leibnitz rule:

∇(fΦ) = (df) ⊗ Φ + f∇Φ.
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In a local orthonormal frame {e1, e2, . . . , en, Je1, Je2, . . . , Jen} it can be written in the
following form:

∇Φ =
n∑

i=1

(e∗i ⊗∇eiΦ + (Jei)∗ ⊗∇JeiΦ).

Note that the Clifford multiplication µ : TM ⊗ S → S induces a map

µ : Γ(TM ⊗ S) → Γ(S)

this means we can product a spinor field with a vector field.

Definition 1 (Dirac Operator). The composition

D = µ ◦ ∇ : Γ(S) ∇→ Γ(T ∗M ⊗ S)
g∼= Γ(TM ⊗ S)

µ→ Γ(S)

is called Dirac operator on Kahler–Norden spin manifold M .

Obviously D : Γ(S) → Γ(S) is first order differential operator. With respect to local
orthonormal frame {e1, e2, . . . , en, Je1, Je2, . . . , Jen}

DΦ =
n∑

i=1

(ei · ∇eiΦ − (Jei) · ∇JeiΦ).

The investigations of the main properties of such a Dirac operator will be a subject of an
another paper.
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