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Abstract

We discuss the Seiberg-Witten theory in four dimensions and possible general-
izations to eight dimensions. We propose an action which is minimized by a set
of monopole equations, previously obtained as a generalization of Seiberg-Witten
theory to eight manifolds with Spin(7) holonomy.

1. Introduction

One of the main problems in low dimensional topology is the determination of diffeomor-
phism invariants of 4-manifolds. The Donaldson theory provides diffeomorphism invari-
ants constructed using solutions of Yang-Mills equations with SU(2) gauge group, through
tedious computations. The Seiberg-Witten theory in four dimensions [1] yields these in-
variants essentially by counting the number of solutions of a set of massless, Abelian
monopole equations [2,3]. Although the starting point of Seiberg-Witten theory was the
determination of diffeomorphism invariants of 4-manifolds, it was later noted that topo-
logical quantum field theories also exist in higher dimensions [4-7]. Thus it is of interest
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to consider monopole equations in higher dimensions and generalize the 4-dimensional
Seiberg-Witten theory.

The Seiberg-Witten equations can be constructed on any even dimensional manifold
(D=2n) with a spinc-structure [8], but a straightforward generalization yields an over
determined set of equations having no non-trivial solutions even locally [9]. In order to
obtain a nontrivial generalization, one first needs an appropriate notion of “self-duality”
of 2-forms in dimensions greater than four. In a previous paper [10] we reviewed the
existing definitions of self-duality and given a (non-linear) eigenvalue criterion for speci-
fying self-dual 2-forms on any even dimensional manifold. Any maximal linear subspace
of these self-dual 2-forms allows to define a linear notion of self-duality. In particular, on
8-manifolds with Spin(7) holonomy the choice of a maximal linear subspace is globally
meaningful and relates to other definitions given in the literature [11-13]. Eight dimen-
sions is also special because the set of linear Spin(7) self-duality equations can be solved
by making use of octonions [14]. The existence of octonionic instantons which realise the
last Hopf fibration S15 → S8 is closely related with the properties of the octonion algebra
[15-17].

In the next section we shall give the set up for the Seiberg-Witten theory, i.e. the spinc-
structures and the Weitzenböck formula in arbitrary dimensions. A detailed exposition
of the theory in 4-dimensions will be given in Section 3, with the purpose of pointing out
possible generalizations to higher dimensions. We note that any 8-manifold with Spin(7)
holonomy is a spin manifold [18,19], hence carries a spinc-structure. In Section 4, we shall
give the monopole equations on 8-manifolds with Spin(7) holonomy [20], and show that
these equations minimize a certain energy integral.

2. Definitions and notation

A spinc-structure on a 2n-dimensional real inner-product space V is defined as a pair
(W,Γ), where W is a 2n-dimensional complex Hermitian space and Γ : V → End(W ) is
a linear map satisfying

Γ(v)∗ = −Γ(v), Γ(v)2 = −‖v‖2 (2.1)

for v ∈ V . Globalizing this defines the notion of a spinc-structure Γ : TX → End(W ) on
a 2n-dimensional (oriented) manifold X, W being a 2n-dimensional complex Hermitian
vector bundle on X. Such a structure exists if and only if the second Stiefel-Whitney class
w2(X) has an integral lift. Γ extends to an isomorphism between the complex Clifford
algebra bundle Cc(TX) and End(W ). There is a natural splitting W = W+ ⊕W− into
the ±in eigenspaces of Γ(e2ne2n−1 · · ·e1) where e1, e2, · · · , e2n is any positively oriented
local orthonormal frame of TX. The restriction of Γ(v) determines a linear map γ(v) :
V → Hom(W−,W+) which satisfies

γ(v)∗γ(v) = |v|. (2.2)
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One can as well start with γ(v) and define Γ(v) as

Γ(v) =
(

0 γ(v)
−γ(v)∗ 0

)
. (2.3)

The extension of Γ to C2(X) gives, via the identification of Λ2(T ∗X) with C2(X), a
map ρ : Λ2(T ∗X) → End(W ) given by

ρ(
∑
i<j

ηije
∗
i ∧ e∗j ) =

∑
i<j

ηijΓ(ei)Γ(ej). (2.4)

The bundles W± are invariant under ρ(η) for η ∈ Λ2(T ∗X). Denote ρ±(η) = ρ(η)|W± .
Then using (2.3) it can be seen that ρ+ : Λ2(T ∗X) → End(W+) is given by

ρ+(
∑
i<j

ηije
∗
i ∧ e∗j ) =

∑
i<j

−ηijγ(ei)γ∗(ej). (2.5)

The maps ρ and ρ± can be extended to complex valued 2-forms in the obvious way.
A Hermitian connection on W , compatible with the Levi-Civita connection of the

manifold induces an imaginary valued connection on certain associated line bundle called
the virtual line bundle L1/2

Γ . we denote the corresponding connection 1-form by A and
its curvature 2-form by FA ∈ Ω2(X, iR). The Dirac operator corresponding to A

DA : C∞(X,W+)→ C∞(X,W−)

is now defined by

DA(Φ) =
2n∑
i=1

Γ(ei)∇A,ei(Φ) (2.6)

where Φ ∈ C∞(X,W+) and e1, e2, · · · , e2n is any local orthonormal frame.
The Weitzenböck formula below [8] is the key in writing the energy integral for Seiberg-

Witten equations.
Weitzenböck Formula: Let s→ R denote the scalar curvature of X. Then

D∗ADAΦ = ∇∗A∇AΦ +
1
4
sΦ + ρ+(FA)Φ, (2.7a)

DAD
∗
Aφ = ∇A∇∗Aφ+

1
4
sφ + ρ−(FA)φ, (2.7b)

where Φ ∈ C∞(X,W+) and φ ∈ C∞(X,W−).
The action integral leading to Seiberg-Witten equations in 4-dimensions is

E(A,Φ) =
∫
X

(
| ∇AΦ |2 +

s

4
| Φ |2 +α | Φ |4 +β | FA |2

)
dvol, (2.8)
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where α = 1
4 and β = 1. Note that this action can be negative for manifolds with negative

scalar curvature. The Dirac equation for Φ now comes into play as

| DAΦ |2= (D∗ADAΦ,Φ) =| ∇AΦ |2 +
1
4
s | Φ |2 +(ρ+(FA)Φ,Φ), (2.9)

where (U, V ) = Ū tV . The energy integral reduces to

E(A,Φ) =
∫
X

(
| DAΦ |2 −(ρ+(FA)Φ,Φ) +

1
4
| Φ |4 + | FA |2

)
dvol. (2.10)

In 4-dimensions, this energy integral will be minimized by solutions of the Seiberg-Witten
equations below.
Seiberg-Witten equations: Let Γ : TX → End(W ) be a spinc-structure on X, A be
the connection on the virtual line bundle and Φ ∈ C∞(X,W+). The Seiberg- Witten
equations read

DA(Φ) = 0 , ρ+(FA) = (ΦΦ∗)0 (2.11)

where (ΦΦ∗)0 denotes the traceless part of the matrix ΦΦ∗.
A generalization of the Seiberg-Witten equations in the form above leads to trivial

solutions [9]. In the next section we will see that in 4-dimensions, ρ+(F ) is automatically
equal to ρ+(F+), and the trace free part of ΦΦ∗ corresponds to a projection denoted by
(ΦΦ∗)+ on a subspace determined by the spinc structure. Thus rewriting the Seiberg-
Witten equation as ρ+(F+) = (ΦΦ∗)+, leads to a set of elliptic monopole equations,
admitting solutions of the 4-dimensional Seiberg-Witten equations [20].

In the next section, we will see that (2.11) arise naturally as minimizers of the action
(2.10). In 8-dimensions, the monopole equations given in [20] will be minimizers of the
action (2.10) with ρ+(F ) replaced with ρ+(F+). This interpretation is however not quite
satisfactory, because the action (2.10) can no longer be tied to (2.8) via the Weitzenböck
formula.

3. Seiberg-Witten equations on 4-manifolds

On a 4-dimensional manifold, let {e1, e2, e3, e4} be a local basis for the tangent bundle,
Φ be a local section of W+ and let the spinc structure be given as

γ(e1) =
(

1 0
0 1

)
, γ(e2) =

(
i 0
0 i

)
, γ(e3) =

(
0 1
−1 0

)
, γ(e4) =

(
0 i
i 0

)
.

(3.1)
Using the notation eij = e∗i ∧ e∗j , we write F = FA as

F =
1
2
[
(F12 + F34)(e12 + e34) + (F13 − F24)(e13 − e24) + (F14 + F23)(e14 + e23)

]
+

1
2
[
(F12 − F34)(e12 − e34) + (F13 + F24)(e13 + e24) + (F14 − F23)(e14 − e23)

]
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(3.2)

Note that γ(ei)γ(ej ) = γ(k) for any even permutation of (i = 2, j = 3, k = 4) and hence
the map ρ+ vanishes on the anti-selfdual part of F . Using the fact that Fij’s are pure
imaginary, we have

(ρ+(Fijeij)Φ,Φ) = −Fij(γ(ej )Φ, γ(ei)∗Φ). (3.3)

We introduce the notation Φ(i) = γ(ei)Φ and we write

(ρ+(F )Φ,Φ) = −(F12 +F34)(Φ(2),Φ(1))−(F13−F24)(Φ(3),Φ(1))−(F14 +F23)(Φ(4),Φ(1)).
(3.4)

On the other hand it can be seen that

(Φ(2),Φ(1))2 + (Φ(3),Φ(1))2 + (Φ(4),Φ(1))2 = − | Φ |4 (3.5)

and

| F |2= −(F12 +F34)2− (F13−F24)2− (F14 +F23)2 +2(F12F34−F13F24 +F14F23) (3.6)

Thus when the first part of the Seiberg-Witten equations is satisfied, i.e. DAΦ = 0 the
energy integral reduces to

E(A,Φ) =
∫
X

[(F12 + F34)(Φ(2),Φ(1)) + (F13 − F24)(Φ(3),Φ(1)) + (F14 + F23)(Φ(4),Φ(1))]

−α[(Φ(2),Φ(1))2 + (Φ(3),Φ(1))2 + (Φ(4),Φ(1))2]
−β[(F12 + F34)2 + (F13 − F24)2 + (F14 + F23)2]
+2β[(F12F34 − F13F24 + F14F23)] (3.7)

The last term in the action is a topological term proportional to the first Pontrjagin
class of the line bundle. Thus the action will be minimized if the sum of the first three
term can be made zero. If we define

U = ((F12 + F34), (F13 − F24), (F14 + F23)), V = ((Φ(2),Φ(1)), (Φ(3),Φ(1)), (Φ(4),Φ(1))
(3.8)

the first three terms in the action becomes (U, V ) − α(V, V ) − β(U, U), and the lowest
value will be achieved when U = kV , which leads to k − α − βk2 = 0 for positive real
numbers k, α and β. Taking β = 1, it can be seen that k = 1

2 and α = 1
4 , we are led to

the Seiberg-Witten equations (2.11).
In [20] we have shown that the right hand side of (2.11) has an interpretation in terms

of projections determined by the spinc structure. Namely, given any (global, imaginary-
valued) 2-form F , the image under the map ρ+ of its self-dual part F+ coincides with
the orthogonal projection of (ΦΦ∗)+ of ΦΦ∗ on the subspace generated by those matrices
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which are the images under the ρ+ map of the self-dual 2-forms [20]. As a result the
Seiberg-Witten in 4-dimensions has the expression given below.

F12 + F34 = 1/2(Φ(2),Φ(1)) = −i/2(φ1φ̄1 − φ2φ̄2) = −1/2Φ∗γ(e2)Φ,

F13 − F24 =
1
2

(Φ(3),Φ(1)) = 1/2(φ1φ̄2 − φ2φ̄1) = −1/2Φ∗γ(e3)Φ,

F14 + F23 =
1
2

(Φ(4),Φ(1)) = −i/2(φ1φ̄2 + φ2φ̄1) = −1/2Φ∗γ(e4)Φ. (3.9)

4. Monopole equations on 8-manifolds and the action integral

Let F be a 2-form on an even dimensional manifold and let ±λi be the eigenvalues of
the corresponding skew-symmetric matrix. We have defined the notion of “self-duality”
of a 2-form as the equality of the λi’s, as a concept generalizing the self-duality in 4-
dimensions [13]. In eight dimensions, these 2-forms constitute a 13-dimensional subman-
ifold in which there are 7-dimensional maximal linear subspaces. The choice of any such
subspace gives a set self-dual 2-forms say {fi}, i = 1, . . .7. Furthermore if the 8-manifold
posseses Spin(7) holonomy, the 4-form Ψ =

∑
i fi∧fi is globally defined [6]. However the

requirement that the curvature 2-form F belongs to one of these subspaces is too strong,
for it gives 21 equations for the 8 components of the connection [21]. On the other hand
determining the the projection of F onto a 7-dimensional linear space via Seiberg-Witten
type equations gives 7 differential equations for the components of A. It has been shown
that these equations form an elliptic system under the Coulomb gauge [21], hence they
are expected to be useful in applying index theorems to define global invariants.

The most widely known of the maximal linear subspaces of strong self-dual 2 forms
is the so-called CDNF-plane, corresponding to a set of self-duality equations proposed
in [11]. We use however a different maximal linear subspace [10,20] that will lead to
monopole equations reducible to 4-dimensions. An orthonormal basis for this maximal
linear subspace is

f1 = dx1 ∧ dx5 + dx2 ∧ dx6 + dx3 ∧ dx7 + dx4 ∧ dx8,

f2 = dx1 ∧ dx2 + dx3 ∧ dx4 − dx5 ∧ dx6 − dx7 ∧ dx8,

f3 = dx1 ∧ dx6 − dx2 ∧ dx5 − dx3 ∧ dx8 + dx4 ∧ dx7,

f4 = dx1 ∧ dx3 − dx2 ∧ dx4 − dx5 ∧ dx7 + dx6 ∧ dx8,

f5 = dx1 ∧ dx7 + dx2 ∧ dx8 − dx3 ∧ dx5 − dx4 ∧ dx6,

f6 = dx1 ∧ dx4 + dx2 ∧ dx3 − dx5 ∧ dx8 − dx6 ∧ dx7,

f7 = dx1 ∧ dx8 − dx2 ∧ dx7 + dx3 ∧ dx6 − dx4 ∧ dx5. (4.1)

The self-dual part of F =
∑

i<j Fijei ∧ ej , F+ is defined as the projection of F on the
linear subspace spanned by the fi’s above, explicitly given as
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F+ = 1/4(F15 + F26 + F37 + F48)f1

+1/4(F12 + F34 − F56 − F78)f2

+1/4(F16 − F25 − F38 + F47)f3

+1/4(F13 − F24 − F57 + F68)f4

+1/4(F17 + F28 − F35 − F46)f5

+1/4(F14 + F23 − F58 − F67)f6

+1/4(F18− F27 + F36 − F45)f7. (4.2)

The spinc structure is defined by choosing γ(e1) = I, where I is the identity matrix,
and γ(ei), i = 2, . . . , 8 as the real skew-symmetric matrix corresponding to fi−1, which
can be written down easily. Then ρ+(fi)’s can be computed from (4.2) and as the resulting
matrix is skew-symmetric, they can be identified with a 2-form, denoted also by ρ+(i),
by abuse of notation.

ρ+(f1) = γ(e1)γ(e5) + γ(e2)γ(e6) + γ(e3)γ(e7) + γ(e4)γ(e8) = 2[e13 − e24 − e57 − e68]

ρ+(f2) = γ(e1)γ(e2) + γ(e3)γ(e4) − γ(e5)γ(e6)− γ(e7)γ(e8) = 2[e15 − e26 + e37 + e48]

ρ+(f3) = γ(e1)γ(e6) − γ(e2)γ(e5) − γ(e3)γ(e8) + γ(e4)γ(e7) = 2[e17 + e28 − e35 + e46]

ρ+(f4) = γ(e1)γ(e3) − γ(e2)γ(e4) − γ(e5)γ(e7) + γ(e6)γ(e8) = 2[e12 + e34 + e56 − e78]

ρ+(f5) = γ(e1)γ(e7) + γ(e2)γ(e8) − γ(e3)γ(e5)− γ(e4)γ(e6) = 2[e14 + e23 − e58 + e67]

ρ+(f6) = γ(e1)γ(e4) + γ(e2)γ(e3)− γ(e5)γ(e8)− γ(e6)γ(e7) = 2[−e16 − e25 − e38 + e47]

ρ+(f7) = γ(e1)γ(e8)− γ(e2)γ(e7) + γ(e3)γ(e6) − γ(e4)γ(e5) = 2[e18 − e27 − e36 − e45].

(4.3)

The monopole equations are now [20]

ρ+(FA+) =
7∑
i=1

< ρ+(fi),ΦΦ∗ > ρ+(fi)/|ρ+(fi)|
2 (4.4)

which are equivalent to the set of equations

H1 =F15+F26+F37+F48 =1/4(φ1φ̄3−φ3φ̄1−φ2φ̄4+φ4φ̄2−φ5φ̄7+φ7φ̄5−φ6φ̄8+φ8φ̄6)=1/4ϕ1,

H2 =F12+F34−F56−F78 =1/4(φ1φ̄5−φ5φ̄1−φ2φ̄6+φ6φ̄2+φ3φ̄7−φ7φ̄3+φ4φ̄8−φ8φ̄4),=1/4ϕ2

H3 =F16−F25−F38+F47 =1/4(φ1φ̄7−φ7φ̄1+φ2φ̄8−φ8φ̄2−φ3φ̄5+φ5φ̄3+φ4φ̄6−φ6φ̄4)=1/4ϕ3,

H4 =F13−F24−F57+F68 =1/4(φ1φ̄2−φ2φ̄1+φ3φ̄4−φ4φ̄3+φ5φ̄6−φ6φ̄5−φ7φ̄8+φ8φ̄7),=1/4ϕ4

H5 =F17+F28−F35−F46 =1/4(φ1φ̄4−φ4φ̄1+φ2φ̄3−φ3φ̄2−φ5φ̄8+φ8φ̄5+φ6φ̄7−φ7φ̄6)=1/4ϕ5,
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H6 =F14+F23−F58−F67 =1/4(−φ1φ̄6+φ6φ̄1−φ2φ̄5+φ5φ̄2−φ3φ̄8+φ8φ̄3+φ4φ̄7−φ7φ̄4)=1/4ϕ6,

H7 =F18−F27+F36−F45 =1/4(φ1φ̄8−φ8φ̄1−φ2φ̄7+φ7φ̄2−φ3φ̄6+φ6φ̄3−φ4φ̄5+φ5φ̄4)=1/4ϕ7,
(4.5)

and it can be seen that

(ρ+(F+)Φ,Φ) = −1/2
7∑
i=1

Hiϕi. (4.6)

Let eijkl = e∗1 ∧ e∗j ∧ e∗k ∧ e∗l . Then the self-dual 4-form Ψ =
∑7

i=1 fi ∧ fi is

Ψ = 6[e1234− e1256 − e1278 − e1357 + e1368 − e1458 − e1467

+e5678 − e3478 − e3456 − e2468 + e2457 − e2367 − e2358]

(4.7)

and it can be seen that

∗(F 2 ∧Ψ) = 3
7∑
i=1

H2
i − 3

∑
i<j

F 2
ij

= −3(F+, F+) + 3(F, F ).

(4.8)

Finally
(Φ ∧ Φ̄,Φ∧ Φ̄) = −

∑
i<j

(φiφ̄j − φj φ̄i)2 (3.10)

(4.9)

We modify the energy integral (2.10) as

E(A,Φ) =
∫
X

−(ρ+(F+)Φ,Φ) + α(Φ ∧ Φ̄,Φ∧ Φ̄) + β(F, F )dvol. (4.10)

Setting Hi = kϕi, it can be seen that the integrand turns out to be

(−1/2k + α+ βk2)(Φ ∧ Φ̄,Φ∧ Φ̄) + 3 ∗ (F 2 ∧Ψ) (4.11)

where the last term is a topological invariant and (taking β = 1) the first term is min-
imized for k = 1/4. It can be checked that this corresponds to the monopole equations
(4.5).

Thus we have shown that the monopole equations given in [20] are minimizers of the
action (4.10). However, as noted earlier, this action fails to relate to an analogue of the
action (2.8) involving scalar curvature and the Dirac equation for Φ never comes into
play.
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