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1. Introduction

Among group-III–V compound semiconductors crystallizing 
in the cubic phase, the family of GaAs, GaSb, InAs and InSb 
span the widest direct bandgap range from 1.51 eV down to 
0.235 eV at zero temperature [1]. Their quantum dots such as 
InAs/GaAs, InSb/GaSb and other combinations have been in 
the spotlight due to their applications as light emitters, and 
because of their potential for emerging quantum informa-
tion technologies [2–5]. For this lattice mismatched family 
the inevitable overarching theme in their heterostructures is 
strain. As gradually appreciated over the decades, strain has 
been a game changer for materials, and especially for semi-
conductors. As a matter of fact, many of the novel features in 
these quantum dots, and the very existance of self-assembly 

are owed to strain [6]. This is also the case for bulk properties. 
For instance, the nature of bandgap changes from indirect to 
direct under tensile strain in the case of germanium [7], or 
higher hole mobilities are attained under strain in group-III–V 
arsenides, and group-III–V antimonides [8].

Historically, within the context of strain the key concept 
of deformation potentials were introduced as early as the 
1950s by the pioneers of semiconductor physics, Bardeen and 
Shockley [9] for uniformly strained silicon and germanium, 
consequently generalized to the multivalley case by Herring 
and Vogt [10]. The shear deformation parameters related to 
the conduction band edge for Si was worked out by Sham 
within the framework of a pseudopotential rigid ion model 
[11]. In the 1960s, both the conduction and valence band 
deformation potentials of Si under hydrostatic and uniaxial 
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stress were studied using Kleinman’s self-consistent perturba-
tion theory [12]. Subsequently, Ge and GaAs crystals under 
uniaxial stress were investigated to define the splitting of 
the valence band and the direct bandgap energy shift within 
optical reflection measurements by Balslev [13]. Likewise, the 
effects of uniaxial stress along [0 0 1], [1 1 0] and [1 1 1] on 
the electronic structure of Ge, GaAs and Si were investigated 
by Pollak and Cardona with the calculation of hydrostatic and 
shear deformation potentials for both conduction and valence 
bands [14]. The 1970s were stagnant except for Pollak’s 
review [15] and the seminal monograph by Bir and Pikus 
on strain-induced effects in semiconductors [16]. A revival 
started with Landolt–Börnstein’s experimental data compila-
tion for III–V semiconductors in the 1980s [17]. Afterwards,  
ab initio theoretical studies abounded [18–25]. As these  
ab initio calculations suffer from well-known bandgap errors 
and require high computational cost [26], semi-empirical 
methods were preferred [27–34]. In particular, O’Reilly using 
a tight-binding method took into account the crystals under 
biaxial compression and tension to study the [0 0 1] axial 
deformation potential b in group-III–V semiconductors [35]. 
He showed that in biaxially strained materials, the heavy hole 
band could show light–hole type characteristics [30], which 
have recently been reinstated [25, 33]. Nowadays, this result 
also has ramifications for quantum information science and 
technology.

To meet the demand for more up-to-date and reliable semi-
conductor data Vurgaftman, Meyer and Ram-Mohan (VMR) 
carried out the most recent compilation, still more than a 
decade ago [1]. Inevitably, they expressed the deformation 
potentials as ranges and gave recommendations which are for 
some materials ambiguous. Notably, there are experimental 
discrepancies on the b and d biaxial deformation potentials. 
Therefore, the necessity for reliable deformation potentials for 
common III–V semiconductors is still a pressing issue within 
the community.

Over the last decade, density functional theory (DFT) 
calcul ations with hybrid functionals have received increasing 
attention as they offer a remedy for the well-known local den-
sity approximation (LDA) failures [26] with the approach 
by Heyd, Scuseria and Ernzerhof [36]. Hence, it is a well-
suited and reliable method for studies on strained materials. 
As a matter of fact, using hybrid functionals, the Van de Walle 
group calculated the shear deformation potentials of GaN and 
InN to explore the effect of strain in polarization switching 
in InGaN/GaN quantum wells [37], and observed pronounced 
nonlinear dependence on strain for AlN, GaN, InN and ZnO 
[38]. For the wurtzite phases of InAs and InP, Hajlaoui et al 
obtained the deformation potentials and revealed the failure 
of the quasi-cubic approximation [39]. Interestingly, to the 
best of our knowledge, a detailed hybrid DFT study for the 
strained cubic phase GaAs, GaSb, InAs and InSb has not been 
undertaken.

Our first aim with this work is to extract reliable deforma-
tion potentials using the state-of-the-art hybrid DFT compu-
tations so as to alleviate the ambiguity in the VMR data [1] 
over the compounds GaAs, GaSb, InAs and InSb. Moreover, 
in the light of hybrid DFT computations we develop a new set 

of empirical pseudopotential parameters which can reproduce 
the band edge hybrid DFT results under various strain pro-
files, while excluding the nonlocal parts and using a very low 
5 Ry energy cutoff in the interest of a reduced computational 
budget for million-atom structures [40]. Finally, we dem-
onstrate the performance of this empirical pseudopotential 
parameter set through examining the directional variation of 
valence band effective masses under uniaxial stress and shed 
light on the intricate heavy and light–hole mixing characteris-
tics in this material family.

2. Theory

2.1. DFT with hybrid functionals

Hybrid functionals such as Heyd–Scuseria–Ernzerhof (HSE) 
combine LDA or generalized gradient approximation (GGA) 
exchange-correlation functionals with Hartree–Fock (HF) exact 
exchange [36]. One of the most advantageous features of HSE 
is to use a conventional local functional instead of a long-range 
part of the HF term; however, the short-range part is switched to 
the nonlocal HF potential since the calculation of the long-range 
part for the localized basis set projected augmented wave (PAW) 
is troublesome and computationally costly. Conveniently, HSE 
reduces the high cost of hybrid functionals to within a factor of 
2–4 higher than pure DFT functionals, while providing many 
reliable energy bandgaps for semiconductors [41]. Some of the 
available hybrid functionals are PBE0 [42], HSE03 [36, 41, 43], 
HSE06 [44] and HSEsol [45]. For our work we have chosen the 
HSEsol functional as it is reported to yield satisfying results for 
small gap semiconductors.

Our ab initio calculations are performed using the Vienna 
Ab initio Simulation package (VASP) code [46–48]. The PAW 
pseudopotentials from the standard distribution are incorpo-
rated in the calculations [49, 50]. For electronic exchange–
correlation functional, GGA in its PBEsol parametrization is 

Table 1. Comparison of our hybrid DFT and EPM unstrained band 
structure values with VMR data [1] at 0 K.

Material

This work

VMR [1]Hybrid DFT EPM

Egap 1.36 1.51 1.52

GaAs ∆0 0.36 0.367 0.32–0.36
a0 5.626 5.653 5.653

Egap 0.81 0.812 0.811–0.813

GaSb ∆0 0.72 0.723 0.749–0.82

a0 6.095 6.0959 6.0959

Egap 0.34 0.41 0.41–0.45

InAs ∆0 0.38 0.388 0.37–0.41

a0 6.043 6.058 6.058

Egap 0.27 0.235 0.235

InSb ∆0 0.76 0.763 0.8–0.9

a0 6.457 6.479 6.479

Note: Egap is the direct energy gap (eV), ∆0 represents the valence band 
spin–orbit splitting (eV), and a0 is the equilibrium lattice constant (Å).
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used [51–53]. For the PAW pseudopotentials d orbitals are 
taken as a valence for the cations, and conventional ones for the 
anions. The lattice vectors and atomic coordinates are relaxed 
until the force on each atom is reduced to less than 0.001 eV 
−

Å
1
 and the total energy is iterated until changes in energy 

are lower than 10−6eV. For each bulk material, × ×4 4 4  
k-grid and 450 eV cutoff energy are used while employing the 
HSEsol hybrid functional. To impose the hydrostatic and uni-
axial stress on the unit cell, we insert the strained lattice vec-
tors. Table 1 shows that the calculated lattice constants are in 
good agreement with the experimental ones.

2.2. Empirical pseudopotential method

Recently, Kim and Fischetti offered local and nonlocal 
empirical pseudopotential parameters for a number of group-
IV and group-III–V semiconductors with 10 Ry cutoff energy 
[33]. Relying on the success of hybrid DFT electronic struc-
tures, we aim to tune the EPM parameters in [33], under the 
conditions of excluding the nonlocal parts, and using a lower 
kinetic energy cutoff of 5 Ry to reduce the computational 
budget.

For arbitrarily strained crystals, the pseudopotential para-
meters are needed not only at fixed wavenumbers but over a 
continuum. For this purpose the cubic Hermite interpolation 
can be used due to its advantage of giving the means to control 

curve slopes at the desired data points [54]. Accordingly, the 
local pseudopotential is represented as

( ) ( )
⎧
⎨
⎩

⎡
⎣⎢

⎤
⎦⎥

⎫
⎬
⎭

= ×
−

+V q V q
a q

a

1

2
tanh 1 ,PCHIP

5
2

6
 (1)

where the ( )⋅tanh  part is introduced for a fast cutoff of the 
pseudopotential at large wavenumbers, q through the a5 and a6 
fitting parameters; the same values as in [33] are retained, as 
displayed in table 2, which should be in Hartree atomic units, 
including q in the tanh part. ( )V qPCHIP  represents the piecewise 
cubic Hermite interpolating polynomial (PCHIP) [54] of the 
symmetric and antisymmetric local form factors, which con-
sists of potentials and their slopes at certain wavenumbers. For 
the unit interval [0, 1] the PCHIP has the form

( ) ( ) ( )
( ) ( )

= − + + − +
+ − + + −

V q q q V q q q s

q q V q q s

2 3 1 2

2 3 ,
PCHIP

3 2
0

3 2
0

3 2
1

3 2
1

 (2)

where V0 and V1 (s0 and s1) are the potential (slope) values at 
either end of the interval.

A general drawback of empirical pseudopotentials is that 
they are frozen in the sense that they lack the self-consistency 
loop to adapt to changes in the chemical environment such as 
bond lengths and directions, as would arise under strain. To fix 
this in the level of hydrostatic strains without a computational 
overhead, Williamson et al introduced an additional fitting 

Table 2. Fitted local EPM parameters: form factors and their slopes for cubic Hermite interpolation, symmetric component of the  
spin–orbit coupling parameter λS, and hydrostatic strain parameter γ, asymptotic cutoff parameters a5, a6.

Parameter

Material

GaAs InAs GaSb InSb

Local form factors Vs
0 −0.6421 −0.5469 −0.5266 −0.4246

V s
3 −0.2350 −0.2070 −0.2043 −0.1990

V s
8

0.0150 0.0000 0.0000 0.0115

V s
11

0.0729 0.0465 0.0601 0.0334

V a
0 −0.1040 −0.0880 −0.0470 −0.0450

V a
3

0.0760 0.0540 0.0330 0.0416

V a
4

0.0570 0.0466 0.0280 0.0350

V a
11

0.0061 0.0070 0.0054 0.0060

Slopes for PCHIP s s
0 0.0000 0.0000 0.0000 0.0000

s s
3

0.0699 −0.1760 −0.1668 −0.1357

s s
8

0.1250 0.1250 0.1400 0.0606

s s
11

0.0596 −0.0062 −0.0819 0.0100

s a
0 0.0000 0.0000 0.0000 0.0000

s a
3

0.0250 −0.0350 −0.0500 −0.0500

s a
4 −0.1150 −0.0900 −0.0400 −0.0400

s a
11 −0.0100 −0.0220 −0.0300 −0.0300

Asymptotic parameters a5 4.05 4.50 4.00 3.90
a6 0.39 0.41 0.30 0.30

Hydrostatic strain parameter γ −1.7392 −0.1046 −2.1285 −1.4260
Spin–orbit coupling parameter (Ry) λS 0.0213 0.0205 0.0385 0.0377
Cutoff energy (Ry) Ecutoff 5.00 4.85 5.00 4.85

Note: Refer to text for the units associated with these parameters.
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parameter γ so that a hydrostatic strain-dependent pseudopo-
tential is formed as [31]

( ) ( ) [ ]γ= +ε εV q V q; 1 ,H (3)

where = + +ε ε ε εxx yy zzH  refers to the hydrostatic (volu-
metric) strain.

For an even better strain performance, we combine Kim 
and Fischetti local EPM form factors [33] with the hydrostatic 
strain parameter, γ [31]. Then, we optimize this set including 
the symmetric spin–orbit coupling parameter λS [31, 55], 
choosing the target values as the experimental bandgaps, and 
our hybrid DFT deformation potentials, and spin–orbit split-
tings. Note that in contrast to [33], we fit EPM to the zero-
temperature bandgaps shown in table 1. Table 2 presents our 
EPM parameters at standard wave numbers of the zinc-blende 
structure: 0, 3 , 4 , 8 , 11 , all in units of π a2 / 0, where a0 
is the unstrained lattice constant of the crystal; the form factors 
and their slopes are set to zero beyond a high value, q2  >  50. 
Regarding the associated units for these parameters, other than 
the tanh part, which was separately mentioned above, V(q) in 
(1) comes out in Ry when wavenumber q is used in units of 
π a2 / 0. Vs,a(q  =  0) are adjusted to the ab initio natural band 

offsets under unstrained conditions offered in [56]. It can be 
seen from table 3 that our local EPM conduction and valence 
band edge effective mass values are in reasonable agreement 
with [33], and the latter is in fair agreement with the VMR 
data [1].

3. Results

3.1. Hybrid DFT results

The hybrid functional DFT band structures for unstrained 
GaAs, GaSb, InAs and InSb including the spin–orbit inter-
action are displayed in figure  1. For these direct bandgap 
compounds, the computed bandgap values are within 10% 
agreement with the experimental values in table 1. If desired, 
further improvement is possible by slightly adjusting the  
so-called range separation parameter of the hybrid func-
tionals [57].

Next, from hybrid DFT calculations we work out the defor-
mation potentials agap, b and d under the relevant stress con-
ditions: hydrostatic, uniaxial stress along [0 0 1] and [1 1 1],  
respectively [58]. Our results are listed in table 4 together with 
VMR [1], and other representative data from the literature. 
Notably, in some cases the VMR ranges and/or suggested 
values deviate substantially from the hybrid DFT results.

An interesting strain condition is when the valence band 

maximum (VBM) is no longer a pure ,3

2

3

2
 state, namely a 

heavy hole band, but rather is dominated by the light hole 

character of the ,3

2

1

2
 state. This occurs for the uniaxial stress 

applied along the [0 0 1] and [1 1 1] directions provided that 
the biaxial strain ( )≡ − + <ε ε ε ε /2 0zz xx yyB , and <ε 0xy  con-
ditions hold, respectively. Figure  2 illustrates the variation 
of the energy splitting between the two uppermost valence 
bands, VBM and VBM-2, as a function of the negative biaxial 
εB and off-diagonal εxy strains under uniaxial stresses along 
the [0 0 1] or [1 1 1] directions, respectively. A cation-based 
grouping is clearly visible, that is, GaAs and GaSb behave in 
a similar way, as do InAs and InSb. Moreover, even though a 
linear trend is manifested under the [0 0 1] uniaxial stress for 
strains exceeding 6%, nonlinear behaviour can be observed 
at smaller strains in InAs and InSb under the [1 1 1] uniaxial 
stress. The nature of the uppermost valence bands will be fur-
ther analysed below with regard to the directional characteris-
tics of the effective mass.

3.2. EPM band edge and effective mass characteristics 
under strain

We would like to contrast the band edge performance of the 
EPM as described by the parameters contained in table  2 
with the hybrid DFT results in the presence of various strain 
conditions. First, we start with the hydrostatic strain, and 
compare in figure 3 the shift of the direct bandgap from its 
unstrained value. Since InSb and InAs become metallic, only 
a limited tensile strain is applied, whereas on the compressive 
side up to 12% hydrostatic strain is considered. The agree-
ment of the EPM with the hybrid DFT results are seen to be 

Table 3. Effective masses (in free-electron mass, m0) at Γ point in k-space for conduction band ( ∗Γme ), heavy hole ∗Γmhh , light hole ∗Γmlh  and 
split-off ∗Γmso  bands, compared with Kim and Fischetti (KF) [33], and Vurgaftman, Meyer and Ram-Mohan (VMR) data [1].

Material ∗Γme [ ]∗Γm 0 0 1hh [ ]∗Γm 1 1 0hh [ ]∗Γm 1 1 1hh [ ]∗Γm 0 0 1lh [ ]∗Γm 1 1 0lh [ ]∗Γm 1 1 1lh
∗Γmso

This work 0.082 0.439 0.845 1.143 0.111 0.099 0.096 0.218
GaAs KF 0.082 0.382 0.696 0.903 0.106 0.094 0.091 0.206

VMR 0.063 0.388 0.658 0.920 0.089 0.081 0.079 0.33–0.388
This work 0.054 0.363 0.724 1.027 0.066 0.060 0.059 0.20

GaSb KF 0.049 0.289 0.534 0.712 0.056 0.052 0.050 0.19
VMR 0.041 0.23 — 0.57 — 0.05 — 0.14
This work 0.030 0.433 0.814 1.127 0.038 0.036 0.036 0.127

InAs KF 0.026 0.31 0.547 0.720 0.032 0.03 0.03 0.109
VMR 0.023 0.39 0.98 0.757 0.042 0.041 0.014 0.09–0.15
This work 0.022 0.357 0.714 1.049 0.024 0.023 0.023 0.172

InSb KF 0.017 0.304 0.534 0.705 0.019 0.018 0.018 0.155
VMR 0.014 0.26 — 0.68 0.015 0.015 — 0.19
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excellent up to 6% compressive strain, beyond which a devia-
tion is observed, predominantly for GaAs. In practical consid-
erations, as within this family, GaAs has the smallest lattice 
constant and the widest bandgap; it is generally used as the 
host matrix material, and therefore it seldom experiences such 
strain levels.

Figures 4 and 5 extend the comparison for all four mat-
erials to uniaxial stress along [0 0 1] and [1 1 1], respec-
tively. For [0 0 1] stress, the strain tensor has the components 
= = = −ε ε ε0.01, 0.02xx yy zz  with the other off-diagonal 

entries being zero, which corresponds to a biaxial strain of 
= −ε 0.03B . The [1 1 1] stress is reflected by the off-diagonal 

strain components of  −0.01 and with all diagonal entries 
being zero. As we fit the EPM directly to the experimental 
values (see table 1) a slight bandgap discrepancy is discernible 
for GaAs and InSb in these figures. Overall, it can be observed 
that the band edge behaviour of the EPM agrees well with 

the HSEsol results within an energy span of at least a few 
hundred millielectronvolts of the respective band edge. The 
reproduction of the crossings of the valence bands along the 
stress directions is particularly crucial.

In addition to these crystallographic directions of [0 0 1] 
and [1 1 1], we would like to test for uniaxial stress along the 
[1 2 0] direction as well as a full anisotropic strain governed 
by the tensors

[ ]

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥=

−

−
ε

0.001 455 0.008 42 0
0.008 42 0.021 63 0

0 0 0.009 15
,1 2 0 (4)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥=

−
ε

0.01 0.003 0.007
0.003 0.01 0.02
0.007 0.02 0.015

.full (5)

Figure 1. Full zone band structures for unstrained GaAs, GaSb, InAs and InSb obtained using hybrid functional DFT. The valence band 
maximum is set to zero energy level separately for each material.

Table 4. Deformation potentials agap, b and d in eV units. Here, the EPM values are fitted to the hybrid DFT results.

Material

This work Literature

Hybrid DFT & EPM VMRa Others

agap −8.69 [−20.4,−6.5] −8.33d, −8.76e, −8.33h, −8.44j, −7.25k

GaAs b −2.13 [−3.9,−1.6] −2.0c,d, −1.7f, −1.9h,e, −2.79b,h

d −4.77 [−6.0,−2.7] −4.23h,e, −4.5c, −4.77g, −7.5b

agap −8.44 −8.3 −7.64h, −7.01k

GaSb b −2.23 −1.6 −1.6b, −1.9f, −  2.0c, −2.3g

d −5.0 −3.98 −3.98g, −4.7c, −4.8i, −5.0b

agap −5.95 [−16.9,−6.08] −6.12e, −6.08h, −4.93k

InAs b −1.76 [−5.9,−1.0] −1.72b, −1.55h,e, −1.7 f,d, −1.8c, −2.33g

d −4.25 [−8,−2.57] −3.3b, −3.6c, −3.1h,e, −3.83g

agap −6.67 −7.2 −6.53h, −5.60k

InSb b −1.88 −2.0 −2.3b, −2.0c,g, −1.9f

d −4.62 −4.7 −4.8c, −5.2b

a [1], b [33], c [17], d [31], e [32], f [30], g [29], h [18], i [59], j [23], k [20].
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The comparison for these cases for GaAs shown in figure 6 
assures that the developed EPM fitting faithfully represents 
the HSEsol results under arbitrary strain profiles. However, 
it should be noted that away from the band edges, the EPM 
starts to deviate from the hybrid DFT, as seen in figures 4–6. 
Thus, this set is specifically suitable for optical and excitonic 
characteristics around the Γ point of the valence and conduc-
tion bands under diverse strain conditions.

Having established the band edge performance of the 
EPM set, we turn to the valence band effective mass char-
acteristics in the absence and presence of strain. As we have 
seen in figure 2, deforming the crystal symmetry of the zinc-
blend structure through stress removes the degeneracy at 
the VBM. Now we would like to explore the nature of the 
bands, and in particular the directional mixing traits between 

the heavy and light hole bands with respect to the unstrained 
case. Figure 7 displays the directional variation of the effec-
tive mass of the top three valence bands, as computed using 
the EPM. Because of further band couplings under strain, the  
effective masses change sign, therefore we prefer to plot  
the inverses of the effective masses. The top panel contains the  
unstrained case, where the VBM is the heavy hole band for all 
directions, and manifests the well-known warping behaviour 
more distinctly than the light hole band [60]. The centre and 
bottom panels in figure 7 show the cases under uniaxial stress 
along the [0 0 1] and [1 1 1] directions, respectively. The 
underlying strain tensors are the same as those for figures 4 
and 5, as quoted above. For either case, the VBM exhibits 
a light–hole character along the stress direction, whereas in 
perpendicular to the stress direction the roles are swapped. 

Figure 2. Energy splitting between the VBM and VBM-2 (which is the band just below the VBM in the presence of spin degrees  
of freedom) obtained using hybrid functional DFT for negative ( )≡ − +ε ε ε ε /2zz xx yyB  and negative εxy strains under uniaxial  
stress along [0 0 1] (left), and along [1 1 1] (right), respectively.

Figure 3. Comparison of hybrid functional DFT versus EPM for the shift of the direct bandgap from their unstrained values as a function 
of negative hydrostatic strain.

J. Phys. D: Appl. Phys. 49 (2016) 085104
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Figure 4. Band edge characteristics of hybrid functional DFT and EPM under uniaxial stress along [0 0 1]. For each material the VBM is 
set to zero energy level. The associated strain tensor is provided in the text.

Figure 5. The same as the previous figure, but under uniaxial stress along [1 1 1].

Figure 6. Band edge characteristics for GaAs of hybrid functional DFT and EPM for uniaxial stress along [1 2 0] (left), and for full 
anisotropic strain (right). The associated strain tensors are provided in the text.

J. Phys. D: Appl. Phys. 49 (2016) 085104
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As a matter of fact, for the [1 1 1] uniaxial stress in GaAs 
and GaSb, perpendicular to the stress direction the VBM 
even changes sign and behaves like an electron band, see the 
inset in the bottom panel. The split-off band, being energeti-
cally remote from the upper two valence bands, preserves its 
isotropic behaviour more or less in all the cases considered 
above. In general terms, our analysis supports the recently 
measured higher hole mobility in group-III–V arsenides, and 
group-III–V antimonides under strain [8], even though there 
is a non-trivial directional mixing between heavy and light 
hole bands.

4. Conclusions

For the technologically important semiconductors of GaAs, 
GaSb, InAs and InSb, hybrid DFT calculations are employed 
to extract accurate band edge deformation potentials. 
Relying on these first-principles data, we offer a new EPM 
parametrization with superior performance under arbitrarily 
strained conditions. Through these EPM band structures, we 
demonstrate how the valence bands change character as a 
function of orientation under uniaxial stresses. This reveals 
that the VBM shows a light hole nature along the stress 
direction while displaying heavy hole behaviour towards 
perpendicular directions. Since this has implications in 
the optical selection rules and spin injection, it may be of 
importance for spintronics or other quantum technologies 
[4, 5]. Given the reliability of our scheme, we believe that 
through a similar hybrid DFT study, the conduction band 
shear deformation potentials of the higher-lying degenerate 
valleys which are beyond the scope of this work can also be 
extracted.
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