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[1] Direction of arrival estimation (DOA) is an important problem in ionospheric research
and electromagnetics as well as many other fields. When superresolution techniques are
used, a computationally expensive search should be performed in general. In this paper, a
no-search algorithm is presented. The idea is to separate the source signals in the
time-frequency plane by using the Short-Time Fourier Transform. The direction vector for
each source is found by coherent summation over the instantaneous frequency (IF) tracks
of the individual sources which are found automatically by employing morphological
image processing. Both overlapping and nonoverlapping source IF tracks can be processed
and identified by the proposed approach. The CLEAN algorithm is adopted in order to
isolate the IF tracks of the overlapping sources with different powers. The proposed
method is very effective in finding the IF tracks and can be applied for signals with
arbitrary IF characteristics. While the proposed method can be applied to any sensor
geometry, planar uniform circular arrays (UCA) bring additional advantages. Different
properties of the UCA are presented, and it is shown that the DOA angles can be found as
the mean-square error optimum solution of a linear matrix equation. Several simulations
are done, and it is shown that the proposed approach performs significantly better than the
conventional methods.
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1. Introduction

[2] The estimation of direction of arrival (DOA) is an
important problem in radar, sonar, seismology and geo-
physics. DOA estimation is used to measure the drift in
ionospheric plasma [Parkinson et al., 1997] and to
separate the source signals [Hirari and Hayakawa,
1999]. Superresolution DOA estimation methods are
popular due to their close to optimum use of the sensor
signals and high resolution [Tuncer et al., 2007]. These
methods return estimates whose ultimate performance is
compared with the Cramer-Rao Bound (CRB) [Stoica
and Nehorai, 1990;Weiss and Friedlander, 1993], which
is seen as a benchmark for unbiased estimators. In the
work of Belouchrani and Amin [1999], a new approach
for DOA estimation of narrowband signals by using

time-frequency distributions is proposed. This work
opened up new possibilities and opportunities. It is
followed by the works on wideband DOA estimation
[Gershman and Amin, 2000] and chirp beamforming for
nonstationary signals [Gershman et al., 2001]. In the
work of Gershman et al. [2001], it is shown that results
better than the conventional (or benchmark) CRB can be
achieved if the signal model is employed over a 3-D
search in parameter space. Furthermore a CRB for the
new problem setting based on the polynomial phase
signal (PPS) model, is presented.
[3] In this paper, a no-search algorithm (NSA) is

presented for DOA estimation. NSA does not require a
search which is an important advantage especially for
array geometries different than uniform linear array
(ULA). We call this algorithm as NSA instead of a fast
algorithm since the computational complexity depends
on the number of snapshots. It turns out that the
complexity of the NSA for the nonoverlapping sources
is significantly less than the exhaustive search algo-
rithms when the number of snapshots is sufficiently low
(ex. N < 400).
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[4] The basic idea for the proposed approach is to
isolate the source signals in the time-frequency plane. In
the literature, the Wigner-Ville distribution (WVD) is
usually employed for this purpose [Belouchrani and
Amin, 1999; Gershman and Amin, 2000; Heidenreich
et al., 2007]. WVD has high resolution but it has cross
terms that spill onto auto terms which generate a large
error term in DOA estimation together with noise. Cross
terms can be twice as large as the auto terms depending
on the source signals. The effect of cross terms as well as
noise can be reduced by spatial averaging [Zhang and
Amin, 2000]. Unfortunately, spatial averaging should be
applied over a large number of time-frequency points in
order to have a meaningful decrease of the cross terms.
Furthermore a smoothing window should be selected and
pseudo-WVD should be used to decrease the effects of
cross terms without degrading the auto terms signifi-
cantly [Stankovic et al., 1997; Barkat et al., 1999]. On
the other hand, STFT offers a computationally efficient
alternative which is free of cross terms. The main
disadvantage of STFT is its low resolution compared to
the WVD. Auto terms in STFT distribution are not free
of ‘‘cross-talk’’ effects due to finite sidelobe attenuation
of the analysis window. The ‘‘cross-talk’’ effects are
usually observed at high SNR. In this work, we use
STFT and morphological image processing [Högbom,
1974] for DOA estimation. STFT is used for DOA
estimation by Zhou et al. [2004]. In the work of Aissa-
El-Bey et al. [2007], STFT is employed for source
separation in case of nondisjoint or overlapping IF tracks
of source signals by using a subspace projection opera-
tion. Each source is assumed to have a region in the time-
frequency plane where this source exists alone. One of
the main advantages of the proposed approach compared
to the previous works is that morphological image
processing together with the CLEAN algorithm results
in a simple and effective method to isolate the IF tracks
of arbitrary source signals. On the other hand, the
proposed method may not be suitable for phase modu-
lated signals which do not have continuous IF tracks or
when there is multipath. CLEAN algorithm is well
known in astronomy [Clark, 1980; Schwarz, 1978] and
radar [Abramovich, 1978; Tsao and Steinberg, 1988;
Deng, 2004], especially to reduce the sidelobe artifacts.
There are different versions of CLEAN algorithm in the
literature. The main idea for these algorithms is the
same, namely, to remove the strongest signals from
the observed data successively. Some of these algorithms
operate over the observed signals [Tsao and Steinberg,
1988], and other versions operate over the covariance
matrix or the spatial spectrum [Stoica and Moses, 2005].
The performance and behavior of these algorithms are
different in general. Recently, it has been shown that the
CLEAN algorithm is very effective in isolating the spatial
spectrum of multiple signals [Tuncer and Friedlander,

2009]. In this paper, we use the sample-based CLEAN
algorithm [Tuncer and Friedlander, 2009; Tsao and
Steinberg, 1988] for isolating the IF track of sources.
[5] The contributions in this paper can be summarized

as follows. Morphological image processing is used in
STFT distributions in order to isolate the source IF
tracks. CLEAN algorithm is adopted for this purpose
which also allows the estimation of sources when the
difference between signal powers is large. The proposed
approach works effectively for overlapping sources.
Multisource DOA problem is converted into a single-
source one. A no-search algorithm is presented for DOA
estimation. The algorithm is based on the indirect solu-
tion of a linear matrix equation in MSE optimum sense
for the UCA. The proposed approach is general in the
sense that any signal with an arbitrary continuous IF
curve in time-frequency plane can be processed.

2. Model And Time-Frequency

Representation

[6] We assume that there are n narrowband plane
waves impinging on a sensor array with M elements.
The narrowband assumption in this paper is the same as
in the works of Belouchrani and Amin [1999] and Zhang
and Amin [2000]. Therefore the time that the wave
propagates across the array, t, and the signal bandwidth,
B, satisfy: Bt � 1. The sensor output vector x(t) is given
as,

xðtÞ ¼ AðqÞsðtÞ þ nðtÞ ð1Þ

where n(t) is white Gaussian noise, A(q) = [a(q1) . . .
a(qn)] is the M � n steering matrix for the source DOA
angles qi. s(t) is the n � 1 source vector at time t and
there are N snapshots for t = 1,. . . N. In our case, there is
no limitation on the type of signal characteristics as long
as it has at least a segment of a continuous IF track in the
time-frequency plane which is not corrupted by other
sources. Nevertheless, we consider constant amplitude
frequency modulated (FM) signals like sk(t) = ake

j8k(t)
for k = 1,. . ., n which are used in ionosphere sounding
[Davydenko et al., 2008]. The instantaneous frequency
for the source signal is to be found automatically by
using the STFT distribution of the signals. STFT is a
linear time-frequency distribution and it is defined as,

Sxðt; f Þ ¼
X1

t¼�1
xðtÞwðt � tÞe�j2pf t ð2Þ

where w(t) is the analysis window. If the above
expression is combined with (1), we have,

Sxðt; f Þ ¼ AðqÞSsðt; f Þ þ Snðt; f Þ ð3Þ
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[7] If the sources are disjoint in time-frequency plane,
the above expression can be written for a single source
as,

Sx tk ; fkð Þ ¼ aðqiÞSsi tk ; fkð Þ þ Sn tk ; fkð Þ 8 tk ; fkð Þ 2 Gi

ð4Þ

where i = 1,. . ., n, Gi is the set of time-frequency points
(or IF track) of the ith source and Ssi(tk, fk) is the STFT of
the ith source signal at (tk, fk). Note that even though the
sources overlap, we assume that it is possible to find
regions in the time-frequency plane where only a single
source exists. Therefore equation (4) is valid for those
regions. The ‘‘cross-talk’’ effect for multiple sources due
to finite sidelobe of the analysis window is assumed to be
low and ignored in (4).

3. No-Search Algorithm

[8] NSA is based on equation (4). The importance of
this equation is that a multisource problem is converted
to a single-source one. This generates several advan-
tages. More specifically, we can find the DOA angles
directly without a search process. In the work of Weiss
and Friedlander [1996], a DOA estimation algorithm
without a search is proposed. It is assumed that the
sensor gain patterns are identical and steering matrix
A(q) is found for the multisource case by using an
iterative approach. Nominal array manifold is assumed
to be known approximately while a unique solution
cannot be guaranteed in general [Weiss and Friedlander,
1996]. In our case, we convert the multisource problem
to a single-source one and solve only a single linear
matrix equation to find the DOA angle.
[9] Direction vector for the ith source, a(qi), can be

found from (4) directly. In fact, in (4), we have a scaled
and noise corrupted direction vector. If we have spatial
averaging as in the work of Zhang and Amin [2000], we
obtain a significantly better result. As the number of
time-frequency points for spatial averaging increases, the
performance increases. Therefore, direction vector estimate
can be found as,

âðqiÞ ¼
1

K

X
k2Gi

Sx tk ; fkð Þ
Sxk ð1Þ

ð5Þ

where K is the number of time-frequency points in Gi and
Sxk(1) is the first element of the vector Sx(tk, fk). The
normalization in the above expression removes the scale
ambiguity and allows coherent summation which in turn
improves the performance. Note that (5) can be used in a
chirp beamformer [Gershman et al., 2001] which does a

3-D search over the parameters and therefore uses the
advantage of the signal model. In our case, we prefer a
computationally simpler approach with no-search and we
will not assume any signal model to have a more general
treatment of the problem. On the other hand, we will also
consider the STFT-MUSIC algorithm with 1-D search in
order to have an idea about the application of conven-
tional techniques in comparison to the STFT-NSA
method.
[10] The next step is to find the DOA azimuth angle qi

given â(qi). We will follow a similar approach as in the
work of Weiss and Friedlander [1996], but an indirect
and better solution is found for the linear matrix equation
specifically for the UCA. Let the phase vector of the
steering vector a(qi) in (1) be Fi = arg{a(qi)}. The
elements of this phase vector can be written as,

fiðmÞ ¼
2p
l

dxm cosðqiÞ sinðgiÞ þ dym sinðqiÞ sinðgiÞ
�

þ dzm cosðgiÞ� m ¼ 1; . . . ;M ð6Þ

where dxm, dym, and dzm are the Cartesian coordinates for the
the mth sensor. Wavelength is l = c/f and c is the speed of
wave, f is the frequency. Since fi(m) is ambiguous by 2p,
phase unwrapping must be applied as in the work of
Weiss and Friedlander [1996]. If we assume that there
are M = 8 sensors on a circular array with intersensor
distance ds = l/2 and gi = p/2 for simplicity, then
jfi(m)j  1.3p. Therefore only ±2p phase jumps occur.
A logic statement based on the elements of fi(m) can be
used to detect the phase jumps and the correction by ±2p
can be done. It turns out that only a few phase jumps
occur and they can be easily corrected. In our case, we
used only four logic statements in order to have the
phase unwrapping.
[11] Let D be the M � 3 matrix for sensor positions,

D ¼

dx1 dy1 dz1
dx2 dy2 dz2

..

. ..
. ..

.

dxM dyM dzM

2
6664

3
7775 ð7Þ

and Yi = [cos(qi) sin(gi) sin(qi) sin(gi) cos(gi)]
T is the

vector for azimuth, qi, and elevation angle gi. When the
array model in (1) is considered, we obtain,

2p
l
DYi ¼ Fi i ¼ 1; 2; . . . ; n ð8Þ

As it is pointed before, normalization and coherent
summation as in (5) improves the estimation perfor-
mance. Let D1 = D � 1 [dx1 dy1 dz1] where 1 = [1 . . . 1]T is
a M � 1 vector and Fi = [fi(1) fi(2) . . . fi(M)]T.
Assuming that Fi = Fi � fi(1)1 is the phase vector due
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to normalization in (5), we can write the following linear
equation,

2p
l
D1Yi ¼ Fi i ¼ 1; 2; . . . ; n ð9Þ

It turns out that it is possible to find two different ways
for determining Yi. In the first case, we can take into
account the normalization in (5) and obtain (9). This
algorithm is no-search algorithm with direct computation
and denoted as NSA-D. The solution for the NSA-D can
be found as,

Ŷi ¼
l
2p

DH
1 D1

	 
�1
DH

1 Fi ð10Þ

[12] The second algorithm is the original no-search
algorithm, namely NSA. NSA algorithm can be seen as
an indirect approach and solves the following equation,

2p
l
DYi ¼ Fi i ¼ 1; 2; . . . ; n ð11Þ

by Moore-Penrose pseudoinverse as in the NSA-D case,

~Yi ¼
l
2p

DHD
	 
�1

DHFi ð12Þ

In the following part of this paper, it is shown that the
solution for (11) corresponds to the MSE optimum one
under the assumption that the geometric center of the
circular array is the origin of the coordinate system. In
this case, the measured phase vector, Fi, which is
relative to the coordinate origin, can be replaced with the
differential phase vector, Fi, which is with respect to the
first (or any other) sensor. Since the columns of D are
orthogonal to the vector 1, the least squares solution for
(11) is invariant to the subtraction of any constant phase
vector. In fact, if we multiply (9) from left by DH, we
obtain (2p/l)DHDYi = DHFi which in turn gives (12).
[13] NSA and NSA-D algorithms return exactly the

same solution for the error-free case, whereas their
performances differ significantly when there is error in
phase terms. It can be shown that the mean-square error
of yi(1) for the NSA solution is (l/2p)22se

2/(r2M) and the
ratio of the mean-square errors of the NSA and NSA-D
algorithms for yi(1) is

MSENSA

MSENSA�D

¼ 9

2M þ 3
ð13Þ

[14] The error for yi(2) is same for both algorithms.
Therefore NSA algorithm performs better than the NSA-
D for M > 3. In the following parts of this paper, we will
only consider the NSA algorithm and the equations in
(11) and (12).

[15] Note that Yi has unit norm and this can be added
as a constraint in equation (11). Since DHD is a diagonal
matrix, the solution in (12) and the solution for the
constrained equation are same up to a scale factor. It
turns out that the scale factor does not change the
estimated azimuth angle.
[16] Once Yi is found from (12), DOA azimuth angle

qi can be obtained as,

qi ¼ tan�1 yið2Þ
yið1Þ

� �
ð14Þ

[17] Elevation angle, gi, can be computed in a simple
manner as,

gi ¼ sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yið1Þ

2 þ yið2Þ
2

q� �
ð15Þ

[18] The proposed approach for DOA estimation can
be applied for arbitrary array geometries but the advan-
tages of the method are mainly seen in circular arrays.
Circular arrays have certain properties which will be
outlined in Lemma 1. The solution for the equation in
(11) can be found in MSE optimum manner due to these
properties. In this respect, we will mainly concentrate on
the uniform circular arrays. In the following lemma, the
properties of UCA are presented.
Lemma 1
Let di = [dxi dyi dzi] be the vector of Cartesian

coordinates of the ith sensor on a planar circular array
with equal interelement distances, ds. dzi = z0 = 0 is
selected 8i and the radius of the circular array is r =

ds=2
sinðp=MÞ. D is a matrix of sensor coordinates as in (7) and

dxj ¼ r cos
2p
M

ðj� 1Þ
� �

j ¼ 1; 2; . . . ;M ð16Þ

dyj ¼ r sin
2p
M

ðj� 1Þ
� �

ð17Þ

dzj ¼ z0 ¼ 0 ð18Þ

Then the following equations are true for M � 3:

ðaÞ
XM
j¼1

dxj ¼ 0 ð19Þ

ðbÞ
XM
j¼1

dyj ¼ 0 ð20Þ
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ðcÞ
XM
j¼1

dxjdyj ¼ 0 ð21Þ

ðdÞ
XM
j¼2

dxj � dx1
	 


dyj � dy1
	 


¼ 0 ð22Þ

ðeÞ
XM
j¼1

d2xj ¼ c1 ¼ r2M=2 ð23Þ

ðf Þ
XM
j¼1

d2yj ¼ c1 ¼ r2M=2 ð24Þ

ðgÞ DHD ¼ diag c1; c1; 0ð Þ ð25Þ

Proof of this lemma is given in Appendix A.
Note that the coordinate axis can always be chosen to

satisfy the relations in (16)–(18). Also only the first two
elements of Yi and first two columns of D in (11) are
required in order to find both the azimuth and elevation
angles as in (14) and (15), respectively. In this case, the
constraint on Yi is converted to an inequality. Fortu-
nately, this inequality constraint does not affect the
solution due to Lemma 1.g.
In the following theorem, it is shown that the MSE

optimum Wiener solution for the equation (11) and the
solution in (12) are same up to a scale factor.
Theorem 1
Let M be the number of sensors in a circular

array with radius r and n < M. Assume that the
differential phase has an error e and the MSE optimum
Wiener solution in equation (11) is obtained as �Yi =
l/(2p)G(Fi + e) where G = sy

2DH(sy
2DDH + se

2I)�1.
Similarly, G = (DHD)�1DH is used for the NSA algo-
rithm as in (12). The covariance matrices are assumed as
Ry = sy

2I and Re = se
2I. Y and e are independent. Then

the following relation between the Wiener and pseudo-
inverse expressions is true,

G ¼
s2
yc1

s2
yc1 þ s2

e

G ð26Þ

Proof of this theorem is given in Appendix A.
The a–b items in Lemma 1 can be used to show that

the columns of D are orthogonal to the vector 1. The
c–g items in Lemma 1 and Theorem 1 show that the unit
norm constraint forYi for the solution of (11) is irrelevant.

Also the requirement for choosing the array geometric
center as the origin of the coordinate axis is satisfied with
Lemma 1.

4. Automatic IF Track Extraction

[19] In this paper, we consider the automatic IF track
extraction by using morphological image processing
techniques. This nonparametric approach allows us to
deal with any kind of source IF characteristics. Most
of the previous work considers the polynomial phase
signals which are only a limited subset of the possible
source characteristics. In this respect, we have a more
general framework for the IF track extraction. The price
paid for this is the relative increase in computational
complexity for the overlapping sources and the perfor-
mance loss especially for the polynomial phase signals.
However further improvement of the performance is
possible if the IF track parameters are estimated and a
limited search is conducted in the parameter space.
[20] We present two different approaches for the auto-

matic IF track extraction. The first approach is for the
nonoverlapping (or disjoint) sources. While this case is
seldom observed (except the single source case), it is
important for the quantification of the performance of the
proposed approach. The detection of this case in a
general scenario is outside the scope of this paper and
we will mainly focus on the performance of the proposed
method in this idealistic case. A more general approach
is the IF track extraction for the overlapping (or non-
disjoint) sources. This approach is computationally more
intense than the previous one. In return, sources can be
more effectively handled. It is assumed that the sources
are ‘‘well separated’’ as in the work of Gershman et al.
[2001] since source DOA is used to associate the IF
segments. We have adopted the CLEAN algorithm
[Schwarz, 1978; Högbom, 1974] in order to isolate
the IF tracks of each source effectively [Tuncer and
Friedlander, 2009].
[21] In the works of Heidenreich et al. [2007] and

Borda et al. [2005], morphological image processing is
used to obtain the IF segments of the source signals. In
the work of Heidenreich et al. [2007], source IF seg-
ments are assumed to be overlapping and WVD is
employed. A smoothing window is used to reduce the
cross terms which generate false IF segments. In this
paper, we employ STFT which does not have cross
terms. However the STFT distribution is not disjoint
for each source and each STFT point contains contribu-
tions from other sources due to finite sidelobe attenuation
of the analysis window, nonstationarity of the source
signals, etc. Note that this is not as disturbing as the cross
terms in WVD where the magnitude of the cross terms
can be twice as large as the source components.
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[22] The morphological image processing for the pro-
posed approach is simple and can be realized essentially
with three MATLAB commands. bwmorph with the
‘‘thin’’ and ‘‘clean’’ terms is used for thinning the binary
image and cleaning the unconnected pixels. bwmorph
command applies a specific morphological operation to
the binary image. When the ‘‘thin’’ argument is used,
pixels are removed to obtain a minimally connected
trace. When the ‘‘clean’’ argument is used, isolated
pixels are removed. bwlabel is used to label each IF
segment and find is used to obtain the x and y coor-
dinates of the nonzero pixels in the binary image. A
detailed discussion of each of these morphological func-
tions can be found in the work of Dougherty and Lotufo
[2003]. In the following part, we present the automatic
IF track extraction and DOA estimation method for non-
overlapping and overlapping sources separately.

4.1. Nonoverlapping Sources

[23] In this case, it is assumed that the source IF tracks
do not overlap and the performance of the proposed NSA
algorithm is considered. Once we have the STFT distri-
bution for the signal, Sxi(t, f), in one of the sensor
elements, we obtain a binary image composed of lines
of one pixel thickness. In order to have such an image, a
threshold is applied on the STFT magnitude. While the
selection of this threshold is important, proposed approach
is robust to the value of the threshold. This threshold is
set to be half of the maximum value in the STFT
magnitude distribution assuming that the source powers
are not extremely different from each other. A smaller
value of the threshold increases both the performance
and computational complexity. Further discussion of the
effect of the threshold selection is done for the over-
lapping sources in the following part. The IF skeleton is
obtained by a thinning operation which also preserves the
pixel connectivity. Short segments are deleted in order to
keep only the source IF tracks which are assumed to be
sufficiently long. In our case, we deleted the segments
below 20 pixels. The elimination of spurious IF tracks due
to noise and ‘‘cross talk’’ is more effectively done in the
case of overlapping sources where CLEAN algorithm is
employed.
[24] NSA for the nonoverlapping sources is simple,

computationally efficient and effective. Assuming that
the number of sources, n, is known, the algorithmic steps
of the proposed algorithm are given below.
Step 1. Compute the STFT magnitude of one sensor

signal and use a threshold to obtain a binary image.
Step 2. Obtain the IF skeleton by using a thinning

operation while preserving the pixel connectivity.
Step 3. Remove short segments and isolated pixels.
Step 4. Label the longest n IF tracks for the sources.

Obtain the set of time-frequency points belonging to
each source, Gi, i = 1, 2,. . ., n.

Step 5. Compute the STFT of remaining sensor signals.
For each source angle qi, i = 1,. . ., n,
[25] (i) Find the direction vector estimate from (5),
[26] (ii) Compute the DOA angle from (12), (14) and

(15).

4.2. Overlapping Sources

[27] In this case, we assume that the source IF tracks
overlap. Therefore isolation of the IF track of each
source is an important problem in order to have a
coherent summation as in equation (5). We adopted the
CLEAN algorithm [Högbom, 1974] for source IF track
isolation. CLEAN algorithm has been applied in astron-
omy [Clark, 1980], radar [Deng, 2004], beamforming
[Schwarz, 1978], etc. The potential of CLEAN algorithm
in DOA estimation has been mostly overlooked in the
literature except in a limited number of sources [Tsao
and Steinberg, 1988; Tuncer and Friedlander, 2009]. In
the work of Tsao and Steinberg [1988], CLEAN algo-
rithm is applied over the covariance matrix. In this paper,
we use a sample-based approach as in the original
CLEAN algorithm for source isolation.
[28] The proposed method, NSA, has the following

algorithmic steps for the overlapping case:
Step 1. Compute the STFT magnitude of one sensor

signal and use a threshold to obtain a binary image.
Step 2. Obtain the IF skeleton by using a thinning

operation while preserving the pixel connectivity.
Step 3. Remove short segments and isolated pixels.
Step 4. Find the DOA for each STFT point correspond-

ing to the indices of nonzero pixels obtained in step 3 by
using equations (5), (12), and (14). Obtain the histogram
of the DOA angles.
Step 5. Select the largest n peaks in the histogram.

Take the initial DOA estimates, q̂i, for the sources as the
angles corresponding to the peaks of the histogram.
Step 6. Construct the steering matrix Â and estimate

the source signals from, ŝ = (ÂHÂ)�1ÂHx.
For each q̂i, i = 1,. . ., n,
[29] (i) Construct the M � (n � 1) steering matrix Ai.

Ai is obtained from Â by deleting the ith column. Also
obtain the source, si, from s by deleting the ith row.
[30] (ii) Find the cleaned data for the ith source as,

xi = x � Aisi
[31] (iii) Repeat the operations in steps 1–3 for the xi

and obtain the isolated IF track of the source i.
Step 7. Using the binary image of the isolated source

tracks, find the crossing points and their indices by
overlapping the IF tracks of the sources (through simple
summation of the binary images).
Step 8. Use the indices of the isolated IF tracks

obtained in step 6 to select the STFT points of the
original signal x. The selection should consider the
distance of each STFT point from the crossing points
found in step 7. If the distance from these crossing points
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is greater than a certain value (in our case 20 pixels), then
the STFT points for the source are used in equation (5).
The true DOA for the source is computed by using (12),
(14) and (15). Step 8 is repeated for each source.
[32] The CLEAN algorithm described in step 6 is very

effective in obtaining the isolated IF tracks of the
sources. One reason for this is its ability to remove
signal components from the original signal x even when
the initial DOA angles qi are not accurate. This comes
with a price such that the STFT points which belong only
to single source are also corrupted to some extent. In step
8, the STFT of the original signal is used to avoid such
distortions and the result of the CLEAN algorithm is
used only to obtain the isolated IF tracks of the individ-
ual sources. The selection of the STFT points based on
their distances from the crossing points are due to the
fact that NSA algorithm assumes that each STFT point is
only due to a single source. At the crossing points and
their neighborhoods, more than one source contribution
violates this assumption. On the other hand, the contri-
butions of the sources on each other’s STFT points due
to finite sidelobe attenuation of the analysis window are
usually negligible at low SNR. Proposed method is
robust to the selection of the threshold value in step 1.
If the threshold is low, both the computational complex-
ity and the performance in estimation of the initial DOA
angles in step 5 increase. Furthermore low power source
signals can be better detected in this case. Therefore the
threshold value can be chosen based on the computa-
tional complexity versus the performance trade off. Note
that in step 6.iii, a different and large threshold value (in
our case 2/3 of the maximum value) is used since the
STFT distribution has only one source and source points
have the largest value. In simulations, we present an
example in order to show the robustness and effective-
ness of the proposed approach to deal with the different
power sources.

5. Computational Complexity

[33] In this part, the computational complexity of the
NSA algorithm for the nonoverlapping sources is dis-
cussed. The computational complexity of the algorithm
for the overlapping sources is about ten times larger than
the nonoverlapping case. There are three major contrib-
utors for the computational complexity of the proposed
algorithm. The steps 1 through 6, where the IF track of
the source signals are identified, requires 1/3 of the
computation time. The steps 8 and 9, where the source
DOA for each IF track is computed, take the 2/3 of the
computation time. Half of the computation time in 8 and
9 comes from the STFT computation for the sensor
outputs.
[34] The computational complexity of the NSA algo-

rithm depends on the number of snapshots and it is one

of the dominant terms. Computational complexity of
NSA is approximately O(MN2

2
log2N + M3). MUSIC

algorithm requires an exhaustive search and the com-
plexity of this search is the dominant term of the overall
complexity of this algorithm. Assuming that A degrees of
accuracy is desired, the computational complexity of
MUSIC is approximately O(M3 + 2M360

A
). The computa-

tional complexity of NSA is significantly smaller than
MUSIC even for large N (ex. N < 400) when A = 0.001
degrees and M = 8. It is possible to decrease the
complexity of exhaustive search under certain assump-
tions. Specifically, if there are no two sources closer than
Dq degrees, a rough search with Dq resolution and then
a detailed search at the close neighborhood of the
MUSIC peaks can be done. The complexity of such an
approach is approximately O(M3 + 2M(360Dq þ

nDq
A
)). In

such a case, NSA has less computational complexity
when N < 50 if Dq = 1 degrees.

6. Simulations

[35] In this part, results for both nonoverlapping and
overlapping sources are presented, respectively.

6.1. Nonoverlapping Sources

[36] The performance of the proposed approach is
evaluated in a uniform circular array with M = 8 sensors.
The radius of the circular array is set such that the
distance between sensors is l/2. The number of snap-
shots is N = 256 and the experiments reflect the result
of 500 trials. The azimuth angles for the three source
signals are 70, 90 and 105 degrees. The elevation angle
is fixed at 90 degrees. Figure 1 shows the STFT dis-
tribution of the three sources when SNR = 15 dB. There are
two chirp signals s2(t), s3(t) and a piecewise linear FM
modulated real signal, s1(t). Phase term for the s2(t) and
s3(t) signals, sk(t) = cke

j8k(t), is 8k(t) = wk,0t + wk,1t
2. s1(t)

is composed of symmetric chirp segments. The center
frequencies are w1,0 = p/5, w2,0 = 0.55p and w3,0 = 0.7p,
respectively. The discrete-time chirp rates are w1,1 =
±0.0028, w2,1 =�0.0014 and w3,1 = 0.0014, respectively,
for the source signals. Initial source amplitudes, ck, are
fixed and c1 =

ffiffiffi
2

p
, c2 = c3 = 1, respectively. When the

morphological image processing process is applied, IF
tracks as in Figure 2 are obtained for the source signals.
DOA angle for each source is found as explained in the
previous section and in equations (5)– (14).
[37] SNR is set as SNR = 10log10ss1

2 where ss1
2 is the

average power of the first signal and the noise variance is
sn
2 = 1. The threshold for the construction of binary

image is half the maximum value of the STFT magni-
tude. STFT uses a Chebyshev window of length 48.
The IF segments shorter than 20 pixels are deleted in
the binary image. NSA algorithm is compared with the
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MUSIC and conventional (or benchmark) CRB. STFT-
MUSIC represents the MUSIC algorithm with search
process applied on the same data that the NSA algo-
rithm uses where the source signals are isolated. There-
fore sample covariance matrix of Sx(tk, fk)/Sxk(1) is
constructed and used for a single source. CRB-PPS is
the Cramer-Rao bound for the polynomial phase signals
[Gershman et al., 2001]. Figures 3–10, 13, and 15
show the Root Mean Square Error (RMSE) for the
source DOA angles and therefore it reflects the average
error in case of multiple sources.
[38] In Figure 3, different algorithms are compared

when the number of sensors is M = 3. Figure 3a shows
the performance of the algorithms for a single source at
70 degrees. NSA performs well and there is no flooring
effect due to ‘‘cross talk’’ for the RMSE since there is
only a single source. Figure 3b shows the performance
comparison when there are two sources at 70 and
105 degrees. The flooring effect can be seen at high
SNR. It is also observed that there is a significant
difference between the observed performances and the
CRB-PPS for the multiple sources. This is mainly due to
the fact that none of the algorithms take advantage of the
model for the polynomial phase signals. In our case, this
allows us to deal with any kind of signal characteristics.
[39] Figure 4 shows the performance of the algorithms

for a single source at 70 degrees when M = 8. Figures 3
and 4 show that NSA is close to the conventional CRB
for single source scenario.
[40] Figure 5 shows the RMSE versus SNR perfor-

mance when the source DOA angles are well separated,
namely at 70, 90 and 105 degrees, respectively. NSA and
STFT-MUSIC perform similarly and they are better than
the conventional CRB even at low SNR. In Figure 6, the
same experiment is repeated when the first two sources

are at 95 degrees and the third source is at 115 degrees.
Conventional CRB andMUSIC are not shown in Figure 6
since they fail in this experiment. The performance of
the NSA and STFT-MUSIC is similar to the previous
case in Figure 5 and they perform even when the sources
have the same DOA. Figure 7 shows the performance
when the number of snapshots, N, is changed. NSA
performs well as long as N � 40 where the IF tracks for
the sources are identified correctly. In Figure 8, N = 256
but we select only K time-frequency points for the
computation of (5). Figure 8 shows the performance of
the proposed algorithm when the K value is changed. A
small number of time-frequency points are sufficient for
a good performance which is an important advantage
compared to the methods that use WVD. In case of
WVD, cross terms can be suppressed only when K is
significantly large [Zhang and Amin, 2000]. Figure 9
shows the performance when the two sources at 70 and
105 degrees are fixed and the third source is swept with
one degree steps. NSA performs significantly better than
the conventional CRB and has a uniform performance
for all source angles. STFT-MUSIC and NSA have
almost the same performance and they are plotted on
top of each other. Figure 10 shows the performance of
the proposed approach for the estimation of the elevation
angle using equation (15). SNR is set to 15dB and the
performance is outlined for different elevation angles for
a single source at 70 degrees azimuth angle.

Figure 1. STFT distribution of the first sensor signal.
SNR = 15 dB.
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Figure 2. IF tracks for the source signals. SNR = 15 dB.
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[41] The results of the above experiments show that the
proposed approach has very good performance compared
to the conventional methods. However the performance
of the NSA algorithm does not get very close to the
CRB-PPS due to the fact that we do not assume any
signal model in time-frequency plane.

6.2. Overlapping Sources

[42] The simulation parameters are same as described
above except the discrete-time chirp rates and center
frequencies. The center frequencies arew1,0 = p/5,w2,0 = 0

and w3,0 = p, respectively. The discrete-time chirp rates
in this case are set as w1,1 = ±0.0032, w2,1 = �0.0063 and
w3,1 = 0.0063, respectively, for the source signals. In
Figure 11a, the STFT of the three sources are shown for
the SNR = 10dB. After the morphological image pro-
cessing operations in section 4 are applied, the histogram
of the DOA angles of the three sources are obtained as in
Figure 12 at the fourth step of the proposed algorithm.
When the CLEAN algorithm is used at the sixth step,
isolated source in Figure 11b is obtained. Figure 11c

Figure 3. M = 3 and (a) single source at 70 degrees, (b) two sources at 70 and 105 degrees.

Figure 4. M = 8 and DOA performance for a single
source at 70 degrees.

Figure 5. DOA performance for three sources at 70,
90, and 105 degrees.
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shows the binary image superimposed on the true IF track
of the source. Figures 11d and 11e show the corresponding
plots for the second and third sources. As it is seen from
Figure 11, estimated IF tracks closely follow the true IF
tracks. In Figure 13, the DOA estimation performance for
the overlapping sources is shown. Proposed method
performs better than the conventional techniques and it
gives lower RMSE than the conventional CRB except at
low SNR. At low SNR, STFT-MUSIC seems to perform
better than STFT-NSA. A flooring effect is seen similar to

the previous cases due to multiple sources. The perfor-
mance for the overlapping sources is slightly worse than
the case of nonoverlapping sources as can be seen from
Figure 5. We also considered the case where the source
powers are significantly different. In this case, the initial
source amplitudes, ck, are selected as, c1 =

ffiffiffi
2

p
, c2 = 1 and

c3 = 1/4, respectively. Figure 14 shows the STFT magni-
tude for the three sources. As seen from Figure 14, the
third source which is obvious in Figure 11, is hardly seen.
The threshold for obtaining the binary image is set to 1/10

Figure 6. DOA performance for three sources at 95,
95, and 115 degrees.

Figure 7. Performance in terms of the number of
snapshots. SNR = 15 dB, DOA angles are 70, 90, and
105 degrees, respectively.

Figure 8. Performance in terms of the number of
samples used for each IF track. SNR = 15 dB; DOA
angles are 70, 90, and 105 degrees, respectively.

Figure 9. Two sources at 70 and 105 degrees are fixed,
and the third source is swept. SNR = 15 dB.
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of the maximum value. In this case, the computational
complexity is increased due to the increase in the number
of nonzero pixels at the fourth step of NSA. Figure 15
shows the DOA performance for each source separately.
Although the third source has the lowest power, it is also
effectively identified and accounted for by the proposed
method. On the contrary, MUSIC algorithm fails since the
DOA angle of the third source cannot be found accurately.
[43] The proposed method performs well in a variety

of cases. It is usually better than the conventional CRB
while it does not get very close to the CRB-PPS due to
the fact that PPS model is not exploited and instead a
more general approach is followed in order to deal with
arbitrary signal characteristics. While a chirp beam-

former [Gershman et al., 2001] can be employed to
solve the same problem, it has a bias which does not
decrease with the increase of SNR. Furthermore it
requires a multidimensional search over the parameter
space. It is possible to define a polynomial-phase beam-
former to process more general PPS but this increases the
dimension of the search space. The proposed method
does not have a significant bias as in chirp beamformer
but it is affected by the finite sidelobe of the analysis
window in STFT as well as the nonstationarity of the
source signals. This introduces a flooring effect at high
SNR for multiple sources. Overall, NSA is an effective

Figure 10. Elevation angle performance of the NSA.
SNR = 15 dB.

Figure 11. SNR = 10 dB and (a) STFT of the three sources, (b) STFT of the isolated first source,
(c) IF of the first source, (d) IF of the second source, and (e) IF of the third source.

Figure 12. Histogram of the DOA estimates for the
three overlapping sources at 70, 90, and 105 degrees,
SNR = 10 dB.
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algorithm for DOA estimation in the time-frequency
plane.

7. Conclusions

[44] A no-search algorithm is presented for DOA
estimation. NSA eliminates the search required for arbi-
trary array geometries. The proposed method converts
the multisource DOA estimation to a single source case
by using morphological image processing in STFT distri-
bution. Both overlapping and nonoverlapping sources are
considered. IF tracks of the source signals are found
automatically in each case and there is no assumption on
the model of the source signals in time-frequency plane.

The CLEAN algorithm is adopted in order to obtain the
IF tracks of the sources. It is shown that the proposed
method can effectively extract the IF tracks even when
the source powers are different. While the proposed
approach can be applied for arbitrary array geometries,
UCA offers certain advantages. The properties of the
UCA under this context are derived and it is shown that
an indirect but least squares optimum solution of a linear
matrix equation for DOA estimation performs better
than the direct solution. Several simulations are done
for the uniform circular array and it is shown that the
performance of the NSA is between the conventional
CRB and CRB for the polynomial phase signals. It
performs significantly better than the conventional tech-
niques in a variety of cases.

Appendix A
Proof of Lemma 1

ðaÞ
XM
j¼1

dxj ¼ r
XM
j¼1

cos
2p
M

ðj� 1Þ
� �

¼ 0 ðA1Þ

ðbÞ
XM
j¼1

dyj ¼ r
XM
j¼1

sin
2p
M

ðj� 1Þ
� �

¼ 0 ðA2Þ

ðcÞ
XM
j¼1

dxjdyj ¼
r2

2

XM
j¼1

sin
4p
M

ðj� 1Þ
� �

¼ 0 ðA3Þ

Figure 13. DOA performance of the three overlapping
sources at 70, 90, and 105 degrees.

Figure 14. STFT distribution for the three sources at
SNR = 10 dB.

Figure 15. Performance for the three overlapping
sources in Figure 14.
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ðdÞ
XM
j¼2

dxj � dx1
	 


dyj � dy1
	 


¼
XM
j¼2

dxidyi þ dx1dy1 � dx1dyi � dxidy1ð Þ

¼ ðM þ 1Þdx1dy1 ¼ 0 ðA4Þ

since dy1 = 0.

ðeÞ
XM
j¼1

dx2j ¼ r2
XM
j¼1

cos2
2p
M

ðj� 1Þ
� �

¼ c1 ¼
r2

2
M

ðA5Þ

ðf Þ
XM
j¼1

dy2j ¼ r2
XM
j¼1

sin2
2p
M

ðj� 1Þ
� �

¼ r2
XM
j¼1

1� cos2
2p
M

ðj� 1Þ
� �� �

¼ c1

¼ r2

2
M ðA6Þ

The elements of the matrix DHD are

ðgÞ
XM
j¼1

dxjdyj ¼
r2

2

XM
j¼1

sin
4p
M

ðj� 1Þ
� �

¼ 0 ðA7Þ

XM
j¼1

dxjdzj ¼ z0
XM
j¼1

dxj ¼ 0 ðA8Þ

XM
j¼1

dyjdzj ¼ z0
XM
j¼1

dyj ¼ 0 ðA9Þ

and from e) and f), we have DHD = diag(c1, c1, Mz0).
Proof of Theorem 1
We assume a planar uniform circular array with the

z coordinate, z0 = 0. If z0 6¼ 0, then it is always possible
to define a new coordinate system with z0 = 0. Therefore
singular value decomposition of M � 2 matrix D is,

D ¼ U

P
0

� �
VH ðA10Þ

where U and V are orthonormal matrices. Then we have,

DDH ¼ U

P2
0

0 0

� �
UH ðA11Þ

and

DHD ¼ V
X2

VH ¼ c1I ðA12Þ

Owing to equation (A12),S2 = c1I where c1 is defined in
Lemma 1. Since 2 � 2 matrix V is orthonormal, VVH =
VHV = I. Therefore V is either identity, V = I, or it is a
permutation matrix of,

V ¼ 0 1

1 0

� �
ðA13Þ

We assume that V = I for simplicity. Otherwise
the same steps can be easily followed for the case
of the permutation matrix, which changes the order of
the vectors in consideration, to complete the proof.
Considering equation (A10), D = [u1 u2 . . . uM] and S =
diag(

ffiffiffiffiffi
c1

p
,

ffiffiffiffiffi
c1

p
). Therefore

D ¼
ffiffiffiffiffi
c1

p
u1

ffiffiffiffiffi
c1

p
u2½ � ðA14Þ

Then the Moore-Penrose pseudoinverse,

G ¼ DHD
	 
�1

DH ¼ 1=
ffiffiffiffiffi
c1

p
ð Þ uH1

uH2

� �
ðA15Þ

The Wiener matrix in Theorem 1 is G = sy
2DH(sy

2DDH +
se
2I)�1. sy

2DDH + se
2I has the same eigenvectors of DDH.

Therefore, (sy
2DDH + se

2I)�1 = ULUH where L =
diag((sy

2c1 + se
2)�1 (sy

2c1 + se
2)�1 (se

2)�1 . . . (se
2)�1).

Then using equations (A11) and (A14), we have

G ¼ s2
yD

H s2
yDD

H þ s2
eI

� ��1

¼
s2
y

ffiffiffiffiffi
c1

p

s2
yc1 þ s2

e

uH1

uH2

" #

ðA16Þ

Therefore we have G =
s2
yc1

s2
yc1þs2

e

G.
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