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1. INTRODUCTION 

One of the most serious health issues is Alzheimer’s 
disease (AD). Today, it is one of the leading causes 
of dementia and directly affects the lives of many 
people. For this reason, radical and updated 
treatments are needed for the treatment of AD. There 
are currently different treatment approaches for AD 
[1–4].

FDA-approved Acetylcholinesterase (AChE) 
inhibitors such as donepezil and tacrine are actively 
used in the treatment of AD. In addition, Monoamine 
oxidase B (MAO-B) inhibitors are known to degrade 
reactive oxygen species (ROS) and hydrogen 

peroxide levels. Compounds that have more effects 
than only inhibiting the AChE, butyrylcholinesterase 
(BChE) or MAO-B enzyme have been the subject of 
numerous investigations [5–9]. In the healthy human 
brain, AChE activity suppresses BChE activity. 
The most important feature that distinguishes 
BChE from AChE is its kinetic responses to ACh 
concentrations. At low ACh concentrations, BChE 
is less effective in AChE hydrolysis, but when high 
ACh concentrations inhibit AChE, BChE begins to 
show more activity [10]. Numerous benefits can be 
obtained by using a single chemical to inhibit multiple 
enzymes, according to studies. Achieving the ideal 
acetylcholine level, preventing the formation of β 
amyloid plaque, and other similar activities make 
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compounds that simultaneously inhibit MAO-B 
and ChE enzymes important in the search for new 
compounds to treat neurodegenerative diseases like 
AD [11–16]. These compounds are also expected to 
have a neuroprotective effect.

Morpholine and piperazine are 6-membered ring 
systems containing heteroatoms. It is known 
that both rings play an active role in both AChE 
inhibition and MAO-B inhibition. Because of 
its non-planar, flexible shape, piperazine forms 
hydrogen bonds with target enzymes. The structure 
of many pharmacologically active compounds from 
various indication groups includes piperazine. Since 
piperazine’s hydrophobic nature helps the structure 
it is a part of across the blood-brain barrier, it is 
widely employed in studies on the treatment of AD, 
Parkinson’s disease and other neurodegenerative 
illnesses [12,14,17,18].

Many AChE/MAO-B dual enzyme inhibitors 
developed today have heterocyclic rings in their 
structure. And in this direction, five new compounds 
containing piperazine and morpholine rings were 
synthesized in this study. The synthesized compounds 
were subjected to characterization tests. Then, in 
silico and in vitro studies of obtained compounds 
were carried out.

2. MATERIALS AND METHODS 

2.1. Chemistry

Every reagent that was acquired from a commercial 
provider was utilized without any additional 
purification. The melting points of the compounds 
were determined with a device (MP90, Mettler-
Toledo, OH, USA). The results were given without 
correction. NMR (nuclear magnetic resonance) 
spectroscopy was recorded on 1H-NMR Bruker DPX 
300 FT-NMR spectrometer; 13C-NMR, Bruker DPX 
75 MHz spectrometer (Bruker Bioscience, Billerica, 
MA, USA). Mass spectra were recorded on a LCMS-
IT-TOF (Shimadzu, Kyoto, Japan) using ESI.

2.1.1. Synthesis of 2-chloro-N-(4-
morpholinophenyl)acetamide (1)  
First, 4-morpholinoaniline (1.78 g, 0.010 mol) was 
dissolved in 20 mL dimethylformamide (DMF). 
Then, triethylamine (TEA) (1.02 g, 0.010 mol) 
was added to the solution and placed in an ice bath. 
Finally, chloroacetyl chloride (1.12 g, 0.010 mol) 
was added dropwise to the mixture. After 1 hour of 
mixing, the precipitated product was filtered and 
separated from the medium. The obtained product 
was crystallized from ethanol.

2.1.2. Synthesis of sodium 4-methylpiperazine-1-
carbodithioate derivatives (2a-e)
Piperazine derivatives (0.005 mol) and NaOH (0.20 
g, 0.005 mol) were dissolved in absolute ethanol. 
Then, carbon disulfide (0.38 g, 0.005 mol) was 
added dropwise to the solution placed in an ice bath. 
After two hours of mixing, the precipitated product 
was filtered. 

2.1.3. Synthesis of target compounds (3a-e)
In acetone, 2-chloro-N-(4-morpholinophenyl)
acetamide (1) (0.38 g, 0.0015 mol) and sodium 
4-methylpiperazine-1-carbodithioate derivatives 
(2a-e) (0.0015 mol) were mixed for four hours. Once 
the reaction was finished, acetone was removed 
with less pressure. After the precipitated product 
was dried, it was rinsed with water to remove any 
remaining salt and recrystallized from EtOH.

2-((4-Morpholinophenyl)amino)-2-oxoethyl 
4-methylpiperazine-1-carbodithioate (3a)

Yield: 81%, M.p.: 166.2-166.6oC. 1H-NMR (300 
MHz, DMSO-d6): δ = 2.33 (3H, s), 2.59 (4H, brs), 
3.01-3.04 (4H, m), 3.70-3.73 (4H, m), 4.01 (2H, 
br.s.), 4.21-4.26 (4H, m), 6.88 (2H, d, J= 9.08 Hz), 
7.43 (2H, d, J= 9.03 Hz), 10.10 (1H, s). 13C-NMR (75 
MHz, DMSO-d6): δ = 41.9, 45.0, 49.3, 54.0, 66.6, 
115.9, 120.6, 131.7, 147.7, 164.9, 195.4. HRMS 
(m/z): [M+H]+ calcd for C18H26N4O2S2: 395.1570; 
found 395.1560.
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2-((4-Morpholinophenyl)amino)-2-oxoethyl 
4-ethylpiperazine-1-carbodithioate (3b)

Yield: 78%, M.p.: 160.0-160.3oC. 1H-NMR (300 
MHz, DMSO-d6): δ = 1.02 (3H, t, J=7.17 Hz), 
2.34-2.41 (2H, m), 2.47 (4H, brs), 3.01-3.04 (4H, 
m), 3.70-3.73 (4H, m), 3.94 (2H, brs), 4.20 (4H, s), 
6.88 (2H, d, J= 9.09 Hz), 7.43 (2H, d, J= 9.04 Hz), 
10.07 (1H, s). 13C-NMR (75 MHz, DMSO-d6): δ = 
12.3, 41.8, 49.3, 50.1, 51.5, 52.2, 66.6, 115.9, 120.6, 
131.8, 147.7, 165.0, 194.9. HRMS (m/z): [M+H]+ 
calcd for C19H28N4O2S2: 409.1726; found 409.1723.

2-((4-Morpholinophenyl)amino)-2-oxoethyl 
4-(4-fluorophenyl)piperazine-1-carbodithioate (3c)

Yield: 79%, M.p.: 187.9-188.3oC. 1H-NMR (300 
MHz, DMSO-d6): δ = 3.01-3.04 (4H, m), 3.23 (4H, 
brs), 3.70-3.73 (4H, m), 4.10 (2H, brs), 4.23 (2H, s), 
4.35 (2H, brs), 6.89 (2H, d, J= 8.98 Hz), 6.94-7.01 
(2H, m), 7.04-7.11 (2H, m), 7.44 (2H, d, J= 8.93 Hz), 
10.09 (1H, s). 13C-NMR (75 MHz, DMSO-d6): δ = 
41.8, 49.0, 49.2, 49.3, 49.9, 51.1, 53.2, 66.6, 115.8, 
115.9, 116.1, 117.9, 118.0, 120.6, 131.7, 147.4, 
147.8, 155.2, 158.3, 165.0, 195.2. HRMS (m/z): 
[M+H]+ calcd for C23H27N4O2FS2: 475.1632; found 
475.1636. 

2-((4-Morpholinophenyl)amino)-2-oxoethyl 
4-(4-(tr i f luoromethyl)phenyl)piperazine-1-
carbodithioate (3d)

Yield: 77%, M.p.: 188.9-190.7oC.  1H-NMR (300 
MHz, DMSO-d6): δ = 3.01-3.04 (4H, m), 3.51 (4H, 
br.s.), 3.70-3.73 (4H, m), 4.13 (2H, brs), 4.24 (2H, 
s), 4.35 (2H, brs), 6.89 (2H, d, J= 8.94 Hz), 7.03 
(2H, d, J= 8.77 Hz), 7.44 (2H, d, J= 8.67 Hz), 7.54 
(2H, d, J= 8.76 Hz), 10.10 (1H, s). 13C-NMR (75 
MHz, DMSO-d6): δ = 41.7, 46.2, 49.3, 50.8, 66.6, 
114.1, 115.9, 120.6, 126.7, 131.7, 147.8, 152.6, 
165.0, 195.2. HRMS (m/z): [M+H]+ calcd for 
C24H27N4O4F3S2: 525.1600; found 525.1607.

2-((4-Morpholinophenyl)amino)-2-oxoethyl 
4-(4-nitrophenyl)piperazine-1-carbodithioate (3e)

Yield: 79%, M.p.: 104.3-105.3oC.  1H-NMR (300 
MHz, DMSO-d6): δ = 3.01-3.04 (4H, m), 3.51 (4H, 

brs), 3.70-3.73 (8H, m), 4.15 (2H, brs), 4.25 (2H, 
s), 4.35 (2H, brs), 6.89 (2H, d, J=8.94 Hz), 6.94 
(2H, d, J=9.44 Hz), 7.44 (2H, d, J=8.85 Hz), 8.10 
(2H, d, J=9.23 Hz), 10.10 (1H, s). 13C-NMR (75 
MHz, DMSO-d6): δ = 41.7, 45.1, 49.3, 50.5, 66.6, 
112.3, 115.9, 120.6, 126.3, 131.7, 137.3, 147.8, 
154.2, 164.9, 195.2. HRMS (m/z): [M+H]+ calcd for 
C23H27N5O4S2: 502.1577; found 502.1572. 

2.2. MAO Enzymes Inhibition Assay

Using the available fluorometric method, the in 
vitro MAO inhibition test was carried out and the 
percentages and IC50 values of the compounds 
obtained were computed in accordance with the 
previously published research group description 
[19–22]. 

2.3. Cholinesterase Enzymes Inhibition Assay

In vitro inhibitory potencies of compounds 3a-3e 
against to AChE and BChE were investigated as 
previously published [18,23–28]. 

2.4. Molecular Docking Study

Molecular docking investigations were carried out 
as previously published [9,19,27]. Similar programs 
were used during the studies [28–31].

3. RESULTS AND DISCUSSION 

3.1. Chemistry

As depicted in Scheme 1, the compounds 3a-3e were 
synthesized. First, 2-chloro-N-(4-morpholinophenyl)
acetamide (1) was obtained by acetylation of 
4-morpholinoaniline. Then, dithiocarbamate salts 
(2a-2e) were obtained from piperazine derivatives 
with the help of carbon disulfide and NaOH. The 
target compounds (3a-3e) were obtained as a result 
of the reaction of 2-chloro-N-(4-morpholinophenyl)
acetamide (1) and sodium 4-methylpiperazine-1-
carbodithioate derivatives (2a-2e).
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3.2. MAO Enzymes Inhibition Assay

MAO enzyme inhibition test results are presented in 
Table 1. In order to compare the enzyme inhibition 
potential of the compounds; moclobemide was chosen 

as the reference inhibitor molecule for the MAO-A 
enzyme and selegiline was chosen as the reference 
inhibitor molecule for the MAO-B enzyme. The 
compounds show selectivity towards the MAO-B 
enzyme. Compounds 3a and 3b were the compounds 
with the closest inhibitory potential to selegiline 
with their IC50 values (3a IC50=0.072±0.003 µM, 3b 
IC50=0.109±0.004 µM) against the MAO-B enzyme. 

3.3. Cholinesterase Enzymes Inhibition Assay

Cholinesterase enzyme inhibition test results are 
presented in Table 2. In order to compare the enzyme 
inhibition potential of the compounds; donepezil 
was chosen as the reference inhibitor molecule for 
the AChE enzyme and tacrine was chosen as the 
reference inhibitor molecule for the BChE enzyme. 

Scheme 1. Synthesis pathway for obtained compounds (3a-3e)

Table 1. IC50 Values of synthesized compounds, 
moclobemide and selegiline against MAO enzymes
Compound MAO-A IC50 (µM) MAO-B IC50 (µM)
3a 0.209±0.009 0.072±0.003
3b 0.371±0.017 0.109±0.004
3c >100 0.167±0.007
3d >1000 >100
3e >100 0.212±0.006
Moclobemide 6.0613±0.2625 -
Selegiline - 0.0374±0.0016
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The compounds show selectivity towards the AChE 
enzyme. Compounds 3a and 3b were the compounds 
with the closest inhibitory potential to donepezil 
with their IC50 values (3a IC50=0.065±0.002 µM, 3b 
IC50=0.084±0.003 µM) against the AChE enzyme.

3.4. Molecular Docking Study

The 2D and 3D binding model of compound 3a with 
AChE enzyme (PDB ID:4EY7) is presented in Figure 
1 and Figure 2, respectively. When the relevant 
models are examined, it is seen that compound 3a has 
pi-pi interactions with Tyr337, His447 and H bonds 
with Tyr124. Figure 3 and  Figure 4 show the 2D and 
3D binding models of compound 3b with the AChE 
enzyme (PDB ID:4EY7), respectively. Compound 
3b has a salt bridge with Asp74 and pi-pi interactions 
with Trp286 when the relevant models are looked at. 
As a result of these observations, it appears that both 
compounds interact with the catalytic active site of 
the AChE. While this interaction is provided through 
the phenyl ring in compound 3a, it is provided 
through the piperazine ring in compound 3b. In 
addition, the phenyl ring of compound 3b interacted 
with the peripheral anionic region of the AChE, just 
like donepezil.

The 2D and 3D binding model of compound 3a with 
hMAO-B enzyme (PDB ID:2V5Z) is presented in 
Figure 5 and Figure 6, respectively. When the relevant 
models are examined, it is seen that compound 3a 
has pi-cation interactions with Tyr435. The 2D and 
3D binding model of compound 3b with hMAO-B 
enzyme (PDB ID:2V5Z) is presented in Figure 7 and 
Figure 8, respectively. When the relevant models 

are examined, it is seen that compound 3b has pi-
pi interactions with Tyr326. These interactions are 
provided by the piperazine ring in compound 3a and 
the phenyl ring in compound 3b.

4. CONCLUSION

Within the scope of this study, five piperazine/
morpholine derivative compounds were designed 
and synthesized. Then, characterization studies 
of the obtained compounds were carried out. The 
biological activities of the obtained compounds were 
investigated by in silico and in vitro methods. The 
results of in silico and in vitro studies are in agreement 
with each other. In the docking studies, compound 3a 
and compound 3b showed interactions against AChE 
enzyme (PDB ID: 4EY7) and hMAO-B enzyme 
(PDB ID: 2V5Z) crystals. In in vitro activity studies, 
compound 3a and compound 3b have the highest 
affinity for AChE and MAO-B. When the molecular 
docking results were examined, interactions were 
observed with amino acids Asp74, Tyr124, Trp286, 
Tyr337 and His447, which are known to positively 
affect AChE activity. Among these interactions, 
Trp286 can be identified as the key interaction for 
AChE activity. A similar interaction is observed 
between the reference drug donepezil and Trp286 
[32,33]. It is known that amino acids Tyr435 and 
Tyr326 are vital in the catalytic activity and selectivity 
against the MAO-B enzyme [34,35]. It is pleasing in 
this respect that compound 3a interacts with Tyr435 
and compound 3b interacts with Tyr326. When the 
results of in vitro and in silico activity studies were 
evaluated, the compounds with the highest inhibitory 
potential against MAO-B enzyme and AChE enzyme 
were compound 3a and compound 3b. As a result, 
five new compounds were successfully synthesized, 
characterization studies were carried out and activity 
studies were started. In silico and in vitro activity 
studies were also successfully completed. And it is 
seen that all the studies were carried out in harmony 
and were successfully concluded. In the light of these 
results, it was observed that piperazine/morpholine 
derivatives could be potential dual AChE/MAO-B 
enzyme inhibitors.

Table 2. IC50 Values of synthesized compounds, donepezil 
and tacrine against AChE/BChE enzymes
Compound AChE IC50 (µM) BChE IC50 (µM)
3a 0.065±0.002 >1000
3b 0.084±0.003 >1000
3c 0.139±0.006 >1000
3d 0.285±0.013 >1000
3e 0.194±0.008 >1000
Donepezil 0.0201±0.0014 -
Tacrine - 0.0064±0.0002
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Figure 1. 2D pose of compound 3a with AChE enzyme (PDB ID: 4EY7)

Figure 2. 3D pose of compound 3a with AChE enzyme (PDB ID: 4EY7)
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Figure 3. 2D pose of compound 3b with AChE enzyme (PDB ID: 4EY7)

Figure 4. 3D pose of compound 3b with AChE enzyme (PDB ID: 4EY7)
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Figure 5. 2D pose of compound 3a with hMAO-B enzyme (PDB ID: 2V5Z)

Figure 6. 3D pose of compound 3a with hMAO-B enzyme (PDB ID: 2V5Z)
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Figure 7. 2D pose of compound 3b with hMAO-B enzyme (PDB ID: 2V5Z)

Figure 8. 3D pose of compound 3b with hMAO-B enzyme (PDB ID: 2V5Z)
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