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Üye : Prof. Dr. Ömer Nezih GEREK .................
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ABSTRACT
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Supervisor: Assist. Prof. Dr. Nuray AT

2014, 42 pages

Sparse signal recovery from compressive measurements assumes a grid

of possible support points from which to estimate the signal support set. How-

ever, reconstruction of high measurement resolution waveforms is very sensitive

to small grid offsets and assuming a fixed grid may result to information loss.

On the other hand, identifying sparse elements over a very fine grid to minimize

information loss is computationally prohibitive. In this work grid matching is

performed via a computationally efficient multi-stage Monte Carlo sampling

approach. The multi-stage sampling method identifies sparse signal elements

and chooses the appropriate grid using information from compressively ac-

quired measurements and any prior information on the signal structure. The

effectiveness of the method in reconstructing high resolution waveforms, after

compressive acquisition, is demonstrated via simulation study.

Keywords: Bayesian Compressive Sensing, Sparse Signal Recon-

struction, Monte Carlo Methods, Grid Matching.

i



ÖZET

Yüksek Lisans Tezi

Sıkıştırmalı Algılamada Izgara Eşleştirme

Hüseyin ŞAR

Anadolu Üniversitesi
Fen Bilimleri Enstitüsü

Elektrik Elektronik Mühendisliği

Danışman: Yard. Doç. Dr. Nuray AT
2014, 42 Sayfa

Seyrek sinyallerin sıkıştırılmış ölçümlerden rekonstrüksiyonunda, sinyalin

destek noktalarının tahmin edildiği muhtemel destek noktalarından oluşan bir

ızgara kullanılır. Ancak yüksek ölçüm çözünürlüklü dalga şekillerinin rekon-

strüksiyonu küçük ızgara kaymalarına karşı çok hassastır ve sabit bir ızgara

varsayımı bilgi kaybına yol açabilir. Öte yandan, seyrek atomların belir-

lenmesinde bilgi kaybını en aza indirmek için, daha küçük gözenekli ızgara

seçmek seyrek atomların bulmak için hesapsal anlamda daha büyük bir iş yükü

gerektirmektedir. Bu çalışmada ızgara eşleştirme işlemi, çok aşamalı Monte

Carlo örnekleme yaklaşımı ile yapılmıştır. Çok aşamalı örnekleme yöntemi,

seyrek sinyal elemanlarını belirler ve sıkıştırılmış ölçümlerdeki bilgiyi ve sinyal

yapısı ile ilgili herhangi bir ön bilgiyi kullanarak uygun ızgara seçimini yapar.

Yöntemin sıkıştırma işleminden sonraki etkinliği, yüksek çözünürlüklü dalga

şekillerinin rekonstrüksiyonunda simülasyon çalışması ile gösterilmiştir.

Anahtar Kelimeler: Bayesçi Sıkıştırma Algılama, Seyrek Sinyal

Rekonstrüksiyon, Monte-Carlo Yöntemleri, Izgara Eşleştirme.
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1. INTRODUCTION

The conventional method for sampling analog signals is based on

Nyquist’s and Shannon’s theorem which guarantees perfect reconstruction of

sampled analog signal, if sampling frequency is at least twice as the signal’s

highest frequency. Most of the signals of interest contain high frequency com-

ponents hence the conventional sampling theory sets some boundaries on re-

constructing or processing these type of signals. For example, an image signal,

having sharp edges contains quite high frequency components. Due to the

Nyquist theorem, one has to take a lot of samples (pixels) to be able recon-

struct the image. Since there will be a redundant information, as a second

step, compression is usually performed. In Figure 1.1, the conventional sig-

nal compression scheme is seen, the signal x is sampled and then compressed

bringing extra computational load, here N denotes signal’s dimension and S is

a dimension of the compressed signal. Note that if only necessary data could

be taken during sampling step there will be no need for an extra compression

and decompression steps. Compressive sensing also known as compressive sam-

pling or sparse sampling is due to the work of Candes, Romberg, and Tao [4]

and Donoho [5], where they show that a signal compressed by using classical

methods such as transform coding can also be efficiently acquired via a small

set of nonadaptive, linear and usually randomized measurements during sam-

pling. So that compressive sensing approach can be used instead of Nyquist

theorem with reduced sampling rate and processing loads.

The main difference between compressive sensing and classical sam-

pling theory is the way they deal with signal recovery. Classical sampling

theory recovers the sampled signal by using sinc interpolation which is a lin-

ear, simple and lightweight process. On the other hand,in compressive sensing

signal recovery is achieved by using some nonlinear, iterative and costly algo-

rithms (Greedy pursuit, Convex relaxation, Bayesian framework, Nonconvex

optimization, etc.) [6].

Compressive acquisition of signals has been shown to preserve sparse

1



Figure 1.1: The conventional signal compression scheme

signal structure in noise. A reconstruction process following compressive ac-

quisition is then able to reveal the sparse elements in the signal. The recon-

struction process assumes a grid on which the sparse signal to be recovered

lies. Recovery is then based on a sparsity basis or dictionary [6], [7] which

is supported on the assumed grid and defines signal sparsity or compressibil-

ity [8–10].

Signals encountered in real world applications are usually determined

by continuous parameters. Therefore, the sparse elements in the signal may

not lie on the assumed grid and not perfectly match the sparsifying basis or

dictionary. If the true signal is not exactly supported on the assumed grid, the

basis (grid) mismatch problem occurs [11–13]. The problem created by the

mismatch between the true signal grid and the recovery grid, is that signal en-

ergy spills onto off-grid components during recovery. This signal energy spread

renders the signal incompressible in the grid assumed for recovery and leads

to information loss. The grid offset may even cause total loss of information in

the case of using high resolution signals [14], [15]. The sensitivity of mismatch

has been studied in [11].

One method to solve the grid matching problem is to use a very fine

grid. This, however, results in high computational complexity and numeri-

cal instability, over shadowing any advantage it might have in sparse recov-

ery [13], [16]. In [16], the issues arising from discretization based on a grid are

overcome by working directly on the continuous parameter space. This yields

2



an infinite dictionary of continuous atoms and arbitrarily high coherence. The

reconstruction algorithm is formed as the solution to an atomic norm mini-

mization problem shown to be equivalent to a semi definite program. In [13]

the continuous basis pursuit method is developed which uses a dictionary with

an auxiliary interpolation function to overcome grid mismatch. In [12] the grid

mismatch is modelled using a mismatch parameter which is estimated via an

alternating descent algorithm.

In this work the grid matching problem is investigated for the case of

reconstructing highly peaked ambiguity function (AF) radar waveforms used

in high-resolution target tracking [14]. Due to the fast decay of the AF of

such signals a fine grid is required to identify sparse signal elements since for

minor grid offsets the signal’s energy vanishes. Reconstruction on a very fine

grid would, however, be computationally expensive. The grid-matching prob-

lem is efficiently solved in this work via a multi-stage Monte Carlo approach.

The methods uses a divide and conquer strategy to identify possible signal

support point subsets and then samples over the smaller subsets to estimate

signal support points and magnitudes. The method combines information

from compressive measurements and prior information on the signal structure

to achieve the reconstruction goal. Specifically, the proposed methodology al-

lows the use of any prior information on the signal without the assumptions

used in Bayesian reconstruction methods which seek a closed form reconstruc-

tion solution [10]. Moreover, this work extends prior work on Monte Carlo

Bayesian reconstruction using the Monte Carlo Bayesian Compressive Sensing

(MC-BCS) [17] by avoiding the assumption of a known grid.

The proposed grid matching reconstruction method is applied to a

radar scenario where radar return waveforms composed of atoms with dif-

ferent delay-Doppler shifts are compressively sensed and reconstructed. The

effectiveness of the method to accurately reconstruct radar signals is then as-

sessed in terms of mean squared error performance (MSE) in the delay-Doppler

plane. Moreover, prior information on the signal structure is shown to improve

reconstruction performance.
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1.1. Organization of The Thesis

This thesis is organized as follow:

In Chapter 2, basic concepts in compressive sensing, lp-norms, orthog-

onal matching pursuit reconstruction approach for sparse signal recovery, some

basic probability theory, ambiguity function and complex Björck sequences are

reviewed.

In Chapter 3, first grid mismatch problem is defined in general and

as an application it is illustrated on ambiguity function. Then grid matching

in Monte Carlo Bayesian Compressive Sensing is given in details. The present

version of this chapter is mainly drawn from [18].

In Chapter 4, numerical set up and results of the proposed method is

given.

In Chapter 5, concluding remarks and possible future work directions

are given.
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2. PRELIMINARIES

In this chapter mathematical concepts which are used in this thesis

are reviewed. First the norm concept and its properties are given. More de-

tailed information about vector norms can be found in [1]. Then, compressive

sensing approach and its problem formulation are introduced. Sparse signal re-

covery algorithms such as l0-norm, l1-norm, l2-norm and orthogonal matching

pursuit reconstruction approaches are defined. As an application ambiguity

function and its properties are introduced. Finally Monte Carlo methods and

Population Monte Carlo with Gibbs sampling method are reviewed.

2.1. Mathematical Background

2.1.1. Norms

In compressive sensing l1−norm, l2−norm and l0−norm are used to

find the sparsest solution among in many possible solutions by minimizing the

error in a constrained optimization setup.

A vector norm is a metric function that measures the distance or

length of a vector in a vector space V . It is denoted by ‖.‖p . The norm of a

vector x = [x1, x2, ...xn]T ∈ V n is a linear function and must satisfy following

three properties.

• Positive Definiteness: ‖x‖p ≥ 0.

• Linearity: ‖αx‖p = α‖x‖p where α is any scalar.

• Triangle Inequality: ‖x+ y‖p ≤ ‖x‖p+‖y‖p where y = [y1, y2, y3, ..., yn]T ∈

V n for all vectors in V .

In this thesis the interested norm class is lp− norm class and specifically the

l0− norm. lp− norms are defined by

‖x‖p =


(
n∑
i=1

|xi|p)1/p , p ∈ [1,∞);

max
i=1,2,..,n

|xi| , p = ∞.
(2.1)
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This definition is also valid for p < 1 but since these norms do not

satisfy the triangle inequality they are known as pseudo-norms. As a special

case for p = 0 the l0− norm is not a pseudo norm and it is defined as;

‖x‖0 = |x| where |x| = the number non-zero elements of x. (2.2)

Specifically, l1− norm and l2− norm are used as reconstruction tools in this

thesis and they are given by

‖x‖1 =
n∑
i=1

|xi| l1 − norm

‖x‖2 =

√
n∑
i=1

|xi|2 l2 − norm
(2.3)

Generally norms are used for measuring strength of a signal or to quantify the

error in approximation problems. For example let x ∈ R2 is a given vector

and A is a one dimensional affine space. To compute the closest point in A to

x, the approximation error between x and a point in A is found by ‖x− x̂‖p.

The choice of p will directly effect the approximation error. The Figure 2.1

illustrates this concept.

Figure 2.1: Approximation errors in R2 for some lp norms [1]

2.1.2. Probability Concepts

Conditional Probability

Let A and B be two events, such that P (B) > 0. The probability of event A

given that event Bhas occurred is called conditional probability and defined

as

6



P (A|B) =
P (A ∩B)

P (B)
(2.4)

where P (A ∩ B) is probability of intersection event A and B. If the event A

and event B are independent events then conditional probability of event A

given that event B has occurred is

P (A|B) = P (A) (2.5)

Bayes’ Rule

Let A1, A2, ..., An be n mutually exclusive events. The union of these

events creates the sample space S. Then for every event A, Bayes rule says

that

P (Ak|A) =
P (Ak ∩ A)

P (A)
=

P (A|Ak)P (Ak)∑
k

P (A|Ak)P (Ak)
(2.6)

Expectation

Let X be a discrete random variable with probability mass function p(x). Then

the expected value of X is defined as

E[X] =
∑
x

xp(x) (2.7)

Similarly for continuous random variable X with probability distribution func-

tion fX(x) the expectation of X is given by

E[X] =

∫ ∞
−∞

xfX(x)dx (2.8)

Uniform Distribution

Let X be a uniformly distributed random variable on the interval a to b, a < b

then the probability density function of X is given by

fX(x) =

 1
b−a , a ≤ x ≤ b

0 , otherwise
(2.9)

Normal Distribution

7



The normal distribution is also known as Gaussian distribution and it is one

of the most important distributions in literature. Generally it is denoted as

N(µ, σ2) where µ is mean and σ2 is variance of the distribution. Probability

density function of a Gaussian random variable is given by

fX(x) =
1√

2πσ2
exp

[
−(x− µ)2

2σ2

]
(2.10)

Laplace Distribution

Let X be a random variable with Laplace distribution with parameter λ; then

the probability density function of X

fX(x) =
λ

2
e−λ|x| (2.11)

Note that 1/λ is equal to the mean.

2.1.3. Ambiguity Function

Ambiguity function (AF) of radar waveforms are very important time-

frequency signal processing tools for high resolution target tracking in radar

systems [19]. Due to their high resolution and fast decayed peak, AF is a

suitable candidate to show mismatch effect in compressive sensing. Detailed

information about radar signals and ambiguity function can be found in [20].

The AF is the time response of a filter matched to a given finite energy signal

when the signal is received with a delay τ and a Doppler shift ν relative to the

nominal values. Specifically,

|A(τ, ν)| =

∣∣∣∣∣∣
∞∫

−∞

d(t)d∗(t− τ)ej2πνtdt

∣∣∣∣∣∣ (2.12)

where d(t) is the complex envelope of the transmitted signal. The ideal AF is

a 2 dimensional Dirac delta function, that is, A(τ, ν) = δ(τ)δ(ν).

The AF has four important properties which make it a major tool for

analysing radar signals. These properties are explained in the following. First

two properties assume the condition of d(t) having unit energy.

Property-1

8



AF takes the highest value at the origin, i.e. it is maximum at (0, 0). If d(t)

is normalized, AF’s maximum value will be equal to 1.

|A(τ, ν)| ≤ |A(0, 0)| = 1 (2.13)

Property-2

The total volume under the normalized AF surface equals to 1. The waveform

type doesn’t affect this volume. If the volume of peak squeezed out by some

target position changes, it will reappear somewhere else.

∞∫
−∞

∞∫
−∞

|A(τ, ν)|2dτdν = 1 (2.14)

Property-3

Every points in AF surface are symmetric with respect to the origin. Because

AF plots generally contain two adjacent quadrants of the AF.

|A(−τ,−ν)| = |A(τ, ν)| (2.15)

Property-4

If the transmitted signal is linear frequency modulated, the resulting AF will

be cropped. Let the AF of d(t) be |A(τ, ν)| then LFM effect is expressed as

follows

d(t)⇔ |A(τ, ν)| (2.16)

d(t)e(jπkt2) ⇔ |A(τ, ν − kτ)| (2.17)

2.1.4. Björck Sequences

Björck sequences are known as constant amplitude zero autocorrela-

tion (CAZAC) sequences [21]. CAZAC sequences have perfect periodic auto-

correlation function with zero side lobes which makes these sequences excellent

candidates for radar tracking. Björck sequences can be defined for prime length

P as follows

9



bP (n) =

 eθ(n|p) for p ≡ 1mod 4

eϕ[n|p] for p ≡ 3mod 4
(2.18)

and

(n|p) =


0 if n ≡ 0modP

+1 if n is a quadratic residue

−1 if n is a quadratic non− residue

(2.19)

where (n|P ) is called as Legendre symbol [22], θ = arccos( 1
1+
√
P

) and ϕ =

arccos( 1√
1+P

). [n|P ] is a function which has a similar definition as Legendre

symbol; the difference is [n|P ] is not equal 0 instead it is equal to 1 if n ≡

0 mod P .

2.2. Compressive Sensing Theory

Figure 2.2: Compressive sensing measurement process [2]

Compressed sensing concept consists of two steps; first one is sampling

the signal by using a given or chosen transformation matrix and second one is

reconstructing the signal back from its transformed version (measurements).

Reconstruction step is usually done via solving a constrained optimization

problem.

10



Now let x be a real valued, finite-length, one-dimensional discrete time

signal x = [x1, x2, ...xn]T . Here the aim of the compressive sensing is to recon-

struct the original signal x from randomly or adaptively taken m measurements

where m� n.

In CS, the reconstruction of the signal depends on three important

properties which are Sparsity, Restricted Isometry Property and Mutual Co-

herence.

Let Ψ ∈ Cn×n be an orthonormal matrix where its each column (Ψ =

[ψ1 ψ2... ψi...ψn] ) is a basis vector. Now we can represent x ∈ Cn as a linear

combination of these basis vectors by

x =
n∑
i=1

ziψi or x = Ψz (2.20)

where z ∈ Cn is equivalent representation of x .

Measurement of the signal is performed by sampling the signal x or

equivalently z using a measurement matrix Φ ∈ Cm×n and y = Φx = ΦΨz =

Θz where y ∈ Cm are observations and rows of the Φ span Cn that we can

reconstruct the original signal x from observations y .

y = Φx = ΦΨz = Θz (2.21)

where Θ = ΦΨ. This is illustrated in Figure 2.2.

2.2.1. Sparsity

Consider a length N signal x. x is called as a K− sparse signal if

number of nonzero elements (K) is smaller than the number of zero elements

(N −K);

K << N (2.22)

The natural signals could be sparse in the time domain but if not

to obtain its sparse representation, they can be represented as sparse signals

11



in different domains by transformation such as Gabor, Wavelet, Fourier, etc.

These are widely used transformations for representing natural signals.

x = Ψz (2.23)

where Ψ is a N ×N sparsity basis or transformation matrix and z is natural

signal.

2.2.2. Measurement Matrix

The basic CS scheme generally depends on randomly taken measure-

ments which should contain enough information to reconstruct the real signal.

The measurement procedure of CS is done via M < N incoherent projections

on to a second basis function;

y = Φx (2.24)

where y is a m × 1 column vector (also called measurements) and Φ is an

M ×N measurement matrix.

Note that there are infinitely many solutions for x in (2.24), CS theory

suggests only one unique solution if measurement matrix satisfies two main

conditions. These are Restricted Isometry Property (RIP) [4] and Mutual

Coherence [23].

Restricted Isometry Property

The measurement matrix Φ satisfies RIP with parameters (K, ρ) if;

(1− ρ) ‖x‖2
2 < ‖φx‖

2
2 < (1 + ρ) ‖x‖2

2 (2.25)

holds for all K− sparse vectors. The purpose of the RIP condition is to keep

the Euclidean distance of all K− sparse signals after their projection onto a

lower dimensional space, measurement space. It means that

(1− ρ) <
‖φx1 − φx2‖2

2

‖x1 − x2‖2
2

< (1 + ρ) (2.26)

where ρ ≈ (0, 1), x1 and x2 are K− sparse variables.

Mutual Coherence
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The other key feature of the measurement matrix is required to provide

is mutual coherence. Mutual coherence is introduced by Donoho et al [23]

which is given by

µ(Φ)
∆
= sup{|〈φi, φj〉| : ∀i, j, where i 6= j} (2.27)

where Φ is the measurement matrix and µ(Φ) is coherence between measure-

ment matrix’s columns. This measure is easier to calculate than RIP parameter

since the complexity of the calculation changes dramatically by the number of

measurement matrix’s columns.

Suppose that,

‖x̂‖0 <
1

2
(1 +

1

µ(Φ)
) (2.28)

This equation will guarantee x̂ which is the sparsest and exact solution for

Φx̂ = y [24].

2.2.3. Signal Reconstruction Algorithms

Given measurements y = Φx = ΦΨz where z, x ∈ Cn and y ∈ Cm

there are infinitely many solutions of y = Φx for m << n . Generally this type

of inverse problem is solved by using the least square approach, that is,

x̃ = arg min
x̂

‖x̂‖2 s.t. Φx̂ = y (2.29)

The closed form solution of this problem is x̃ = (ΦΦT )−1ΦTy but

this solution is generally not a sparse solution and measures energy not the

sparsity as illustrated in Figure 2.3. Hence some other methods are proposed

for this pseudo-inverse problem. One of these methods uses l0 − norm which

also enforces sparsity as a constraint. This optimization problem is stated as

follows:

x̃ = arg min
x̂

‖x̂‖0 s.t. Φx̂ = y (2.30)

l0 − norm counts the number of non-zero elements in x so that this method

is a proper candidate for finding the solution for the reconstruction prob-

lem. However, in this case combinatorial search must be performed. That is

13



 n

K

 time different combinations must be evaluated for a K−sparse vector.

Therefore l0− norm solution has very high complexity which is also known as

NP-Hard [25].

The idea of changing l0− norm by the closest convex norm such as l1−

norm proposed by Chen, Donoho and Saunders in [26]. l1− norm approach is

known as Basis Pursuit and can be stated as follows:

x̃ = arg min
x̂

‖x̂‖1 s.t. Φx̂ = y (2.31)

Reconstruction based on l1− norm is shown exactly to recover K− sparse

signal under the conditions of sparsity of x and incoherence of the measurement

matrix Φ. Moreover, it is shown that the solution will rebuild real signal x̃ with

high probability by using m ≥ cK log(N/K) iid Gaussian measurements [4] [5].

Figure 2.3: (a) Original signal f with random sample points (indicated by red circles); (b)

The Fourier transform f̂ ; (c) Perfect recovery of f̂ by l1 minimization; (d) Recovery of f

by l2 minimization [3]
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Figure 2.3 illustrates these reconstruction approaches where l1 and

l2 solutions of original signal’s fourier domain representation is shown. It is

clearly seen that how well l1− norm reconstructs the signal and preserve the

sparsity versus l2− norm. As mentioned before l2− solution does not guarantee

the sparsity since it measures the energy.

l1−norm works properly even under noisy measurements if a carefully

chosen error threshold ε > 0 and a particular regularization parameter λ >

0 which make a balance between Euclidean and sparsity. This problem is

equivalent to the unconstrained version which is given by

x̃ = arg min
x̂
‖x̂‖1 s.t. Φx̂− y ≤ ε (2.32)

x̃ = arg min
x̂
‖Φx̂− y‖2

2 + λ‖x̂‖1 (2.33)

The l1−norm recovery is an efficient method in various type of applica-

tions but it is not efficient enough for large datasets. So that different methods

has been suggested in literature including Greedy algorithms, Bayesian meth-

ods, etc. Orthogonal Matching Pursuit (OMP) is one of these methods [27].

OMP is a greedy and iterative algorithm which is given in Table 2.1.
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Table 2.1: Orthogonal Matching Pursuit

Algorithm 2.2..1: OMP(OrthogonalMatchingPursuit)

Given:

• Φ = (ψi)
n
i=1 ∈ Cm×n

• x ∈ Rn

• Error Threshold ε

Initialization:

• k = 0, x0 = 0

• r0 = y − Φx0

• S0 = supx0 = Φ

while
∥∥rk∥∥

2
< ε do

• k = k + 1;

• Choose i0 such that;

minc
∥∥cψi0 − rk−1

∥∥
2
≤ minc

∥∥cψi − rk−1
∥∥

2
for all i

• Sk = Sk−1 ∪ {i0}

• xk = arg min
x
‖Φx− y‖2 s.t. supx = Sk

• rk = y − Φxk

end

Output:

• xk

Bayesian compressive sensing is an another method to solve the re-

construction problem which is explained in the next section.

2.3. Monte Carlo Bayesian Compressive Sensing

2.3.1. Bayesian Framework

In Bayesian modeling, solution of the unknown variable relies on the

posterior probabilities. In the linear model of CS y = Φx + n and according
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to Bayesian approach the solution x is being calculated based on posterior

probabilities p(x|y). Recall that p(x|y) = p(y|x).p(x)
p(y)

where p(y|x) is likelihood,

p(y) is the evidence and p(x) is a prior probability. Generally a Bayesian

solution is quite hard to find in a closed form since it requires solving complex

integrals. Thus Monte Carlo method is used as an approximation tool for the

solution of this problem.

If the sparsity of an n × 1 vector x is formalized by a multivariate

Laplace prior, the maximum a posterior estimator of x is given by

p(x/λ) =
λ

2
exp(−λ

2
‖x‖1) (2.34)

xMAP = min
x
{‖y − Φx‖2

2 + α‖x‖1} (2.35)

which is a classic sparse signal recovery by using l1-norm with a threshold α

that balances between sparsity and Euclidean norm [28], [29]. The parameter λ

is known as hyper parameter which determines the distribution and obtaining

this parameter is vital in the recovery process.

2.3.2. Monte Carlo Methods

Monte Carlo (MC) methods are a set of computational algorithms

based on repeated statistical random sampling to obtain some signal or nu-

merical results which have the same statistical properties. MC methods are

especially useful for any system with many coupled degrees of freedoms sys-

tems such as cellular networks, light transport models etc. There are many

types of MC algorithms but general pattern is given in Table 2.2.

For example, let X be a random variable and its expected value or

mean is µ = E[X]. If X1, ..., Xn, are n independent random variables generated

from same distribution, the approximation for the mean is given by

µ ≈ µ̂n =
1

n

n∑
k=1

Xk (2.36)

This type of approximation algorithm is first introduced by Horvitz and Thomp-

son [30]
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Table 2.2: General MC Algorithm Pattern

Algorithm 2.3..1: MC(General MC Algorithm Pattern)

Step-1 Determine the possible input domain.

Step-2 Generate random numbers as inputs from a probability

distribution.

Step-3 Apply some deterministic computations which could be

mean compensation or variance compensation etc.

Step-4 Find the approximation error between produced samples

and real samples.

Population Monte Carlo with Gibbs Sampling

As a special method of MC methods, Population Monte Carlo (PMC)

with Gibbs sampling is one of the suitable algorithms for a Bayesian frame-

work. PMC is defined as a methodology for approximating joint distributions

of unknowns. The unknowns are approximated by randomly measuring sam-

ples and weights iteratively where at each iteration samples of unknowns pro-

duced from known distribution (A parametric prior distribution) [31]. Gibbs

sampling is added to the PMC algorithm to specify the random number gen-

erating function. In Gibbs sampling generation of samples is being made from

joint probability distribution of two or more unknowns and it is efficient in

high dimensions [32]. Djuric and et al combined PCM and Gibbs sampling to

generate high dimensional numbers more efficiently in a Bayesian aspect [33].

This algorithm is given in Table 2.3.
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Table 2.3: PMC with Gibbs Sampling

Algorithm 2.3..2: MC(PMC with Gibbs Sampling)

Variables:

π(x) : Prior distribution

y ∈ Rdy×1 : Observation Vector

h : Rdθ×1 × Rdw×1 → Rdy×1 : Observation Generating Function

θ ∈ Rdθ×1 : Noise Vector with Parametric Distribution

θ ∈ dθ×1 : Unknown vector

q(θ) : Generating Function from Prior

Given:

π(x), w, h, θ

Initialization:

Generate sample streams from π(x)

θml = [θm1,l, θ
m
2,l, θ

m
3,l, ..., θ

m
dθ,l

] where l = 0, 1, 2, ..., dθ

Compute y from y = h(θ, w)

Assign weights according to ωml = p(y|θml )

Procedure:

Step-1 Randomly Choose order of generation of θ

Step-2 Sample a particle from conditioning based on the

normalized weights of particles from the previous iteration

at jth iteration and m = 1, 2, ...,M where M is number of

particles.

θml1,j ∼ ql1,j(θl1|θml1,j−1, θ
m
l1,j−1, ..., θ

m
l1,j−1)

For n = 1, 2, ..., d(θ − 1)

θmln,j ∼ qln,j(θln|θmln,j−1, ..., θ
m
ln,j−1, θ

λm
ln+1,j−1, ..., θ

λm
ln+1,j−1)

where λm is selected particle index.

θmldθ,j ∼ ql
dθ,j

(θl
dθ
|θml

dθ
,j−1, θ

m
l
dθ
,j−1, ..., θ

m
l
dθ
,j−1)

Step-3 Compute Weights

ωm0 =
p(y|θm0 )p(θm0 )

q(θm0 )
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3. GRID MATCHING IN MONTE CARLO

BAYESIAN COMPRESSIVE SENSING

In this chapter first the grid mismatch problem is defined. Then the

proposed algorithm grid matching in Monte Carlo Bayesian compressive sens-

ing is introduced. The present version of this chapter mainly drawn from [18].

3.1. Grid Matching Problem

The research on compressive sensing is so far centered on signals with

sparse representation in finite dictionaries. However, signals we encounter in

the real world are usually determined by continuous parameters. In the litera-

ture, a discretization approach is adopted to reduce the continuous parameter

space to a finite set of grid points. This simple strategy yields superb perfor-

mance results for many problems provided that the true parameters fall into

the grid set. On the other hand, it is not precise that signal fall exactly into

on the supported true grid points, the so-called basis (grid) mismatch problem

occurs. When this is the case, the true signal cannot be sparsely represented by

the assumed dictionary specified by the grid points. One might suggest to solve

this problem by using a finer discretization. However, using a finer discretiza-

tion will also increase the coherence of the dictionary which in return would,

in general, degrade the performance. Moreover, increasing the discretization

level also results in higher computational complexity and numerical instability,

overshadowing any advantage it might have in sparse recovery [16].

In this work, target tracking scenario has been assumed with high

resolution AF radar waveforms. Note that AFs are highly peaked wave-

forms and hence, finer grid is needed in their reconstruction. On the other

hand, increasing the discretization level would not be a wise choice due to the

above-mentioned reasons (ruining incoherence, being computationally expen-

sive, and/or causing numerical instability). In this work, we propose a novel

method by using Monte Carlo approach with Bayesian CS framework.
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3.2. Signal Model

A discrete complex Björck constant amplitude zero autocorrelation

(CAZAC) sequence is denoted as sl(m), m = 0, 1, . . . ,M − 1 [34]. Here the

sequence is expressed as sl(m) where l = 1, 2, . . . , L that denotes L different

sequences with discrete delay Doppler shifts. s1 is then symbolize the zero shift

sequence. CAZAC sequences are excellent candidates for use in target tracking

because of zero-autocorrelation properties which results very low delay and

Doppler correlation. That means delay and Doppler correlation of a CAZAC

sequence (AF of a CAZAC sequence) is almost an ideal highly peaked Dirac

delta function on a fine grid.

A continuous version of complex sequence s1 is introduced in order

to illustrate the effect of grid mismatch. Using a pulse shape w(t), t ∈ [0, tw]

where tw is the pulse duration [34], a continuous time CAZAC is given by;

d(t) =
M−1∑
m=0

s1(m)w(t−mtw) (3.1)

which can be transmitted as a quadrature amplitude modulated (QAM) wave-

form. After reflection on a target, the transmitted signal in (3.1) returns to

the radar receiver having a continuous valued delay τ and Doppler ν shift. The

continuous delay-Doppler shifted atom without noise is given by;

dτ,ν(t) = d(t− τ)e−i2πνt. (3.2)

In addition to this, a noiseless and a noisy version of a complex sig-

nal which composed of T elementary signals or atoms s
¯τ`,ν`

(t) with shifts

{τ`, ν`}`∈|T | as in (3.2), where T = |T | is the cardinality of the atom sub-

set T (The cardinality means the number of components in the set T ), are

respectively given by;

rT (t) =
∑
`∈T

γ(`)dτ`,ν`(t) (3.3)
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rυT (t) =
∑
`∈T

γ(`)dτ`,ν`(t) + υ(t) (3.4)

where γ(`) is the random atom strength which assumed to be effect of target

and transmission while υ(t) is a zero mean additive random noise. The goal of

reconstruction is to estimate (3.3) as accurately as possible. In a compressive

receiver, however, only the compressively received version of the radar return

signal in (3.4) is available [35,36].

3.3. Grid Mismatch Effect on Ambiguity Function

Let the vector dτ,ν of length M represents an oversampled version of

the continuous atom in (3.2) with delay-Doppler shift τ, ν. Then;

gτ,ν = Φdτ,ν (3.5)

Where gτ,ν is modelled as the compressed C-dimensional versions of the con-

tinuous atoms obtained via a C ×M partial Fourier compressive acquisition

matrix (Measurement matrix Φ) [37].

In order to identify an unknown delay-Doppler signal which exists in

its compressed form as gτ,ν in the compressively received signal, templates are

generated using atoms with shifts τ̄ , ν̄ as in (3.2).

gτ̄ ,ν̄ = Φdτ̄ ,ν̄ (3.6)

The compressed AF surface will be the correlations between compressed tem-

plates gτ,ν and compressively received atoms with unknown delay-Doppler

shifts gτ̄ ,ν̄ as defined in [38]. The compressed AF surface is;

Aτ̄ ,ν̄,τ,ν =
g∗τ̄ ,ν̄gτ,ν

||gτ̄ ,ν̄ ||2||gτ,ν ||2
(3.7)

with Aτ̄ ,ν̄,τ,ν = 1. When τ̄ ≈ τ and ν̄ ≈ ν, the AF will be peaked and on the

other hand the increase in |τ̄ − τ | and |τ̄ − τ | will cause a rapidly decrease in

compressed AF as shown in Figure 3.1. The highly peaked AF of the CAZAC
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sequences [19,38,39] and the RIP property of the acquisition matrix [8] causes

that effect.

Figure 3.1: AF with no mismatch (ετ = 0 and εν = 0).

Due to sharp peak of Aτ̄ ,ν̄,τ,ν as in Figure 3.1 the grid which supposed

to AF being on needs to be very fine in order to represent the AF without any

distortion and identify true delay-Doppler pair {τ, ν}. As mentioned before

the sharpness of AF waveforms causes a challenging grid matching problem

during reconstruction and solving this problem by defining a fine grid poses

other problems that are expensive computational load and numerical instabil-

ity. Solving the grid matching problem in a computationally efficient manner

is the goal of this thesis. The proposed reconstruction method described in

Section 3.4..

In order to solve grid mismatch problem a new grid definition approach

is suggested that there will be not only one fixed grid however the new approach

defines J̃ individual grids. Now, let templates which lie on  th grid and

defined by {lτδτ , lνδν} delay-Doppler points are considered. Where {δτ , δν} is

the spacing between grids.
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The grid mismatch errors in delay ετ and Doppler εν can be defined

as follow;

min
lτ
|τ̄` − lτδτ | = ετ (3.8)

min
lν
|ν̄` − lνδν | = εν (3.9)

Where τ` and ν` is delay-Doppler pair of the `th atom in the radar return

signal in (3.4).

Figure 3.2: AF with minor grid mismatch (ετ < 1 and εν < 1).

In case of a grid mismatch, the maximum value of the compressed AF

will be Aτ,ν,τ+ετ ,ν+εν < 1 that makes a reduction in received signal strength.

The maximum grid mismatch occurs when ετ = δτ/2, εν = δν/2.
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Figure 3.3: AF with major grid mismatch (ετ ≈ δτ/2 and εν ≈ δν/2).

The effect of grid mismatch on the compressed AF is illustrated in

Figures 3.1, 3.2, 3.3. In Figure 3.1 perfect matching is assumed and a highly

peaked AF results that ετ = 0 and εν = 0. In Figure 3.2 the template grid

is slightly offseted because the peak value is smaller then 1 that ετ < 1 and

εν < 1. In Figure 3.3 a severe effect of grid matching occurs resulting to

deterioration of the AF and loss of received signal energy that ετ ≈ δτ/2 and

εν ≈ δν/2.

3.4. Grid Matching Based Reconstruction

In this section the MC-BCS [17] method is extended to solve the grid

matching problem. The method gives the posterior of the solution as a set of N

reconstructed signals or solutions s̀n and probabilities ωn for n = 1, . . . , N ,

reflecting the belief that the signal s̀n represents as accurately as possible the

original noiseless signal rT (t) in (3.3).

In this thesis, as a solution of the grid mismatch problem, a new
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method is defined where instead of using a fixed fine grid, a set of J individ-

ual coarser grids are used with a multi-step sampling technique. With this

approach computational expense is lightened. The th grid is defined by the

points

{τl,, νl,} ={lτδτ + fτ lνδν + fν}

lτ = 1, 2, . . . , Lτ , lν =1, 2, . . . , Lν ,  = 0, 1, . . . , J − 1
(3.10)

where δτ , δν represent the spacing between grid points so that the incoherence

between atoms in each grid is obtained [11]. fτ = δτ/J, fν = δν/J symbolize

the amount of spacing adjacent grids.

The vector dn,kl, of length M is an oversampled version of the continu-

ous atom in (3.2) shifted by a delay-Doppler τl,, νl, supported on the th grid

point in (3.10).

Similarly, noiseless radar return signal in (3.3) is represented as an

oversampled vector with length M and defined as follows

rT =

|T |∑
l=1

γ(l)dn,kl, (3.11)

where the shifts of (3.3) in subset T are matched to the nearest grid points in

(3.10).

The performance evaluation is performed by using rT as a target sig-

nal for estimating. Furthermore, the compressed C-dimensional measurements

are generated with projection of the signal vector onto the compressive mea-

surement domain by C ×M partial Fourier compressive measurement matrix

(acquisition matrix) Φ as in [37].

gl, = Φdl, (3.12)

Sampling Step-1

Atoms from all grids with the same discrete shifts are first summed

as in 3.13. Then for sampling one of the LτLν discrete delay-Doppler pairs

{lτ , lν} in (3.10) which, for all grids  = 0, . . . , J − 1, correspond to delay-

Doppler location {τl,, νl,}, templates are formed as;
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Figure 3.4: AF with grid spacing 20, no-mismatch, true atom lying on the grid at (0, 0)

without grid matching

ǧl =
∑
∈J̃

gl, (3.13)

where gl,, l = 1, . . . , L represents compressed atom templates in (3.12) that

supported on grids  ∈ J̃ . Set J̃ is empirically chosen to minimize correlations

of ǧl with the residue that yield large values for a true atom ` in (3.3) which

lies in any grid in (3.10). Residue correlations are found as;

κ(l) =
ǧ∗l h

res
k,n

ǧ∗l ǧl
, l = 1, . . . , L. (3.14)

where for kth iteration k = 1, . . . , Tn and hresk,n represents residue here and is

defined in (3.24). The likelihood ratio can be found by using (3.14) as follows

Λ(κ(l)) =
p1(κ(l)|T )

p0(κ(l)|∅)
, l = 1, . . . , L. (3.15)

where p0(κ(l)|∅) is the noise-only likelihood. Then, the kth atom is sampled
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Figure 3.5: AF with grid spacing 20, grid mismatch exists, true atom lying on the grid at

(0, 0) without grid matching

according to the likelihood as

l ∼ {Λ(κ(l))}Ll=1∑L
l′=1 Λ(κ(l′))

(3.16)

Then the sampling bias is

bκk,n =
Λ(κ(l))∑L
l′=1 Λ(κ(l′))

. (3.17)

Sampling Step-2

Using compressed atom templates as in (3.13) is part of a divide and

conquer strategy. This strategy lightens the algorithm by avoiding to evaluate

equation (3.14) and (3.15) to not make LτLνJ times process for sampling an

equal number of atoms and instead carries out the process with only LτLν

times. In addition to that, another sampling step needs to be introduced to

improve the probability of correct reconstruction and decrease the MMSE, as

shown next, which is carried out 3J times. Sampling step 2 consider that
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Figure 3.6: AF with grid spacing 20, no-mismatch, true atom lying on the grid at (10, 0)

with grid matching

ǧl−1, ǧl and ǧl+1 ∀l are highly correlated compressed atom templates because

of summing process in (3.13). That means during sampling one atom the

neighbour atoms should be considered. Therefore, sampling atom l, implies

that atoms l − 1 and l + 1 could also be the true discrete delay-Doppler shift

pair.So that, atoms l − 1, l, and l + 1 are considered for the second sampling

step and then 3J , atom templates included into likelihood for sampling.

{{gl+ı,}1
ı=−1}J=1 (3.18)

The numerical based reconstruction method will simply assign a pos-

terior distribution to each support set without seeking a single solution even

though the set of compressed atom templates is not an incoherent set [11].

The information in the estimated posterior will also project the spread of the

AF. In addition the SNR will also affect the amount of information contained

in the compressively received signal that effect of SNR is shown in Figure 4.2.
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Figure 3.7: AF with grid spacing 20, grid mismatch exists, true atom lied on the grid at 10

and grid matching is applied.

The proposed method’s performance for preserving signal information

in off-grid components is illustrated in Figures 3.4, 3.5, 3.6, and 3.7.The set up

chosen for performance analyses is as follow: for all cases grid spacing chosen

as 20, in Figure 3.4, it is assumed that no mismatch occurs that means true

atom is lied on the grid at origin 0 and grid matching procedure is not applied,

in Figure 3.5; it is assumed that mismatch exists that means true atom is not

lied on the grid at origin 0 instead lied at 10 and again grid matching procedure

is not applied, in Figure 3.6; it is assumed that no mismatch occurs that means

true atom is lied on the grid at origin 0 and grid matching procedure is applied,

in Figure 3.7; it is assumed that mismatch exists that means true atom is not

lied on the grid at origin 0 instead lied at 10 and grid matching procedure is

applied.

The effect of mismatch can be seen clearly from Figures 3.4 and 3.5

that because of the mismatch in Figure 3.5 the highly peak of AF is missed
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due to losing the true atom energy. However by applying MCBCS with grid

matching procedure atom energy is preserved and distortion in AF is prevented

as in Figure 3.6. Even if grid mismatch exists, the atom energy is preserved

and a highly peak AF is observed as Figure 3.7.

After choosing neighbour templates next step is finding correlations

with the residue for each template as

a(ı, ) =
g∗l+ı,h

res
k,n

g∗l+ı,gl+ı,
(3.19)

where ı = −1, 0, 1 ,  = 1, 2, . . . , J and hresk,n represents residue here and is

defined in (3.24). The likelihood ratio is;

Λ(a(ı, )) =
p1(a(ı, )|T )

p0(a(ı, ))|∅)
(3.20)

where ı = −1, 0, 1 ,  = 1, 2, . . . , J and p0(a(ı, ))|∅) is the noise-only likelihood.

Then, the kth index pair is sampled as

{ı, }k,n ∼
{{Λ(a(ı, ))p(ı)p()}1

ı=−1}J=1∑J
=1

∑1
ı=−1 Λ(a(ı, ))p(ı)p()

(3.21)

where the prior distribution on the grid p() and prior distribution of atom

p(l) was considered.

The magnitude of k th atom α̂n(k) is calculated by associating sampled

index in (3.21) as;

α̂n(k) = a(ı, ) (3.22)

The normalized sampling bias is computed as;

bak,n =
Λ(ân(k))p(ı)p()∑1

ı′=−1

∑J
′=1 Λ(a(ı′, ′))p(ı′)p(′)

(3.23)

The bias terms (3.17) and (3.23) are used in the weighting the reconstructed

signals in (3.27). In order to sample next index pair and atom index k of

solution n is incremented by 1 and the residue is updated by removing sampled

atom from residue as
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hresk,n = hresk−1,n − α̂n(k − 1)gk,nl, , hres1,n = h (3.24)

Two stop criteria is defined for the above process. The process is halted and

Tn = k if the change in residue between two iteration is smaller than a threshold

as ∆res = |||hresk,n||22 − ||hresk−1,n||22| < Θres or k = Tmax where Tmax << M

guarantees sparsity. The appropriate stopping criterion selection may be a

future work research problem.
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Table 3.1: The Grid Matching MC-BCS Algorithm

Algorithm 3.4..1: (The Grid Matching MC −BCS Algorithm)

◦ For each solution n = 1, . . . , N

♦ Let hres1,n = h in (3.24)

♦ For k = 1, . . . , Tmax until ∆res < Θres

Sampling step 1:

• Form templates ǧl , l = 1, . . . , LτLν as in (3.13)

• Calculate correlations κ(l) in (3.14)

• Calculate likelihood ratios Λ(κ(l)) in (3.15)

• Sample index l in (3.16)

• Calculate bias bκk,n (3.17)

Sampling step 2:

• Identify templates {{gl+ı,}1
ı=−1}J=1 in (3.18)

• Calculate correlations a(ı, ) (3.19)

• Calculate likelihood ratios Λ(a(ı, )) (3.20)

• Sample index pair {ı, }k,n (3.21)

• Set α̂n(k) = a(ı, ) with {ı, }k,n

• Calculate bias bak,n (3.23)

• Update residue hresk,n (3.24)

• Halt if ∆res < Θres or k = Tmax and set Tn = k

♦ Form solutions s̀n (3.25)

♦ Calculate weights ωn using (3.27) and normalization

♦ Calculate ŝMMSE (3.29)
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3.4.1. Reconstructed signal posterior, point estimate, and recon-

struction error

The individual sampled atoms, multi-element reconstructed signals

are given as

s̀n =
Tn∑
k=1

α̂n(k)dn,kl, (3.25)

for each n with α̂n(k) and vectors dn,kl, with an index pair {ı, }k,n from (3.21).

g̀n = Φs̀n (3.26)

Compressed sparse solutions are also formed for each n as in 3.26. The

unnormalized weights of the reconstructed signals are given by;

ω̃n =
Λ({α̂n(k)}Tnk=1)∏Tn

k=1 b
α
k,nb

κ
k,n

, Λ({α̂n(k)}Tnk=1) =
p1(βn|T )

p0(βn|∅)
(3.27)

where βn = g̀∗nh. The weights take into account the likelihood ratio Λ({α̂n(k)}Tnk=1)

and the biases bκk,n in (3.17) and bak,n in (3.23) from the two sampling steps are

normalized as;

ωn =
ω̃n∑N
n=1 ω̃n

(3.28)

After that, by using a minimum mean squared error (MMSE) estimation a

point estimate can be obtained as;

ŝMMSE =
N∑
n=1

ωns̀n. (3.29)

The MSE in reconstruction w.r.t. the noiseless signal in (3.3) is given by;

E =
N∑
n=1

ωn
|| ‘sn − r||22
|| ‘sn||2||r||2

(3.30)

The algorithm scheme is given in Table 3.1.
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4. RESULTS

4.1. Numerical Setup

In this thesis the compressive measurement or acquisition matrix Φ

with C × M size is constructed which satisfies the properties mentioned in

Section 2.2.2.. RIP and mutual coherence properties provide to preserve the

structure of any sparse M -dimensional vector after a dimensionality reduction

due to C < M . Because of this measurement matrix is chosen as a known

partial Fourier [37] matrix with orthogonal rows such that;

ΦΦ∗ =
M

C
IC×C (4.1)

where M
C

compensates for the dimensionality reduction of any signal that trans-

formed from signal domain to compressive measurement domain by projecting

the atoms on Φ from M to Cand C represents number of compressive mea-

surements that is chosen as 500 : 500 : 4000. The scaling factor M
C

, however,

amplifies the noise variance [9, 40].

A length 10 rectangular pulse was generated to simulate the pulse

shape w(t), t ∈ [0, tw] . The transmitted signal in (3.1) is obtained by combin-

ing rectangular pulse w(t) with a CAZAC sequence of prime length 499. Then

2500 delay and Doppler shifted atoms were generated from (3.1) on a very

fine grid. The total length of the oversampled transmitted signal which emu-

lates the continuous signal was, considering a maximum delay set to M = 5090.

The received signal contained 10 delay-Doppler shifted waveforms selected ran-

domly from the pool of 2500 atoms. Atoms had a zero mean complex Gaus-

sian random strength and a zero mean complex Gaussian noise was added to

atoms. Both the received signal and templates were projected on the acquisi-

tion matrix and the first step of the algorithm was run with second step that

is grid selection as described in Section 3.4.. The MC-BCS algorithm was also

run with no grid selection in order to investigate the effectiveness of the grid

matching method proposed.
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4.2. Simulation Results

Figure 4.1 shows the effect of grid selection on the MC-BCS, both

grid selection added algorithm and MC-BCS with no grid selection for 20dB

SNR and a different number of compressive measurements. It is observed that

the MC-BCS with grid selection reconstruction performance improved with

an increase in compressive measurements C. The grid selection improved the

performance of the reconstruction with significant amount.
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Figure 4.1: MSE reconstruction performance versus the number of compressive

measurements for MC-BCS with grid selection and MC-BCS with no grid selection for

20dB SNR.

In Figure 4.2, the performance of the algorithm is observed under

16, 18 and 20dB SNR values and plotted. As expected the algorithm perfor-

mance is improved when the SNR increases, even for low SNRs satisfactory

performance is observed.

36



500 1000 1500 2000 2500 3000 3500 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of compressive measurements C

M
S

E
 i

n
 r

ec
o

n
st

ru
ct

io
n

Reconstruction error for different SNR

 

 

SNR=16dB

SNR=18dB

SNR=20dB

Figure 4.2: MSE reconstruction performance versus the number of compressive

measurements for MC-BCS with grid selection for 16, 18, and 20dB SNR.
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5. CONCLUSION

In this thesis the grid mismatch problem in compressively sensed radar

waveforms with high resolution properties was studied.

In chapter 3 the Monte Carlo Bayesian compressive sensing method

(MC-BCS) was extended as multistage MC-BCS to overcome grid mismatch

problem. The first step of the multistage MC-BCS is to identify the possible

grid configuration in a pre-defined J different grids by using likelihood ratio

between grids and residue. Secondly, the multistage MC-BCS recovers sparse

signal atoms which lies on a chosen grid and accurately represent the received

radar signal. The method avoids computational load of defining one dense grid

which might be another solution method for handling the mismatch problem.

The performance analysis of the proposed method in sparse reconstruction

of high resolution AF that is compressively received in noise was done via a

numerical based study in two cases. First, MC-BCS and the multistage MC-

BCS were compared to see the grid estimation effect on MC-BCS in 20dB noise.

Then the proposed method was tested for different noise levels including 16dB,

18dB and 20dB. The proposed method’s performance is improved against MC-

BCS as expected, grid estimation made a major contribution to MC-BCS. The

proposed method works efficiently even for low SNRs.

In this thesis the MC-BCS method is extended by adding grid esti-

mation stage, as a future work a new approach for grid estimation can be

developed which will seek to minimize the reconstruction error while minimiz-

ing the computational expense.
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