MICROTUBULE ORGANIZING CENTRE IN CULTURED FIBROBLAST CELLS
Melih ZEYTİNOĞLU¹, A. Tansu KOPARAL¹

ABSTRACT

Many cell types express an internal and external polarization of various cytoplasmic components as microtubule organizing centre (MTOC). It is believed that MTOC and increasing and decreasing of cytoplasmic microtubules are very important for direction of cell movement and cell polarity. In our experiments, the relationship between MTOC and cytoplasmic microtubules is examined by using immunofluorescence methods on 3T3 fibroblast cell lines. Our results demonstrated that MTOC has a central location in most cells. Moreover a coordination between microtubules and centrioles during formation of cytoplasmic microtubules was identified. It has been shown that the microtubule formation initiated at the cell centre in which centrioles were located.

Key Words: Fibroblast, Microtubule, Microtubule Organizing Centre, MTOC.

1. INTRODUCTION

Cellular microtubules are often associated with special structures called microtubule organizing centre (MTOC) (Berhardsky and Vasiliev, 1988; Preston et al., 1990; Vogl et al., 1995). Microtubules of cytoskeleton are usually about 25 nm in diameter as tubes which are universal component of all eukaryotic cells except mammalian erythrocyte. Just 25 years ago, microtubules were discovered by organization of the first mitotic spindle of the embryo after duplication of the sperm centrosome. Just 25 years ago, microtubules were discovered by organization of the first mitotic spindle of the embryo after duplication of the sperm centrosome. Microtubules play several important roles like transport of vesicles, chromosomes, etc., cell motility (wavy locomotion, cilia or flagellate locomotion, etc.) and changes in cell shape (from squamous to round, elongation, etc.).

Microtubules are formed from a single protein called “tubulin”. Assembling of microtubules occur from positive terminal by polymerization of tubulin in the cytoplasm when a critical tubulin concentration is reached (Prescott et al., 1992). Microtubules originate from a single site which is MTOC, radiating out towards periphery of the cell. In vitro experiments show that MTOCs are not only constituted nuclear centres of microtubules, but also control the structure of these microtubules and their arrays. Many different morphological types of MTOCs are described like basal bodies (Novi-

¹ Anadolu University, Science Faculty, Molecular Biology Division of Biology Department, Eskişehir, TURKEY.
Fax: 0-222-3204910; E-mail: mzeytino@anadolu.edu.tr.
Received: 18 August 2000; Revised: 13 August 2001; Accepted: 17 October 2001.
Results

Figure 1. Organization of Microtubules In 3T3 Cell Line. Microtubules Stained by Fluorescent Labelled Anti-Tubulin Antibody. Scale Bar = 25 μ

Figure 2. 3T3 Cell Lines Treated With Nocodazole For 1 Hour. Distribution of Depolymerized Microtubules by Fluorescent Labelled Anti-Tubulin Antibody Staining. Scale Bar = 25 μ

3. RESULTS

Microtubules were visible in the cytoplasm of an interphase cell by labelling with fluorescent anti tubulin antibodies after the cells have been fixed (Figure 1). Usually the microtubules are present in high density in the cell and radiate out from the cell centre to periphery.

In this experiment, fibroblasts were first treated with nocodazole for 1 hour, then nocodazole containing medium was washed for regrowing of the microtubules in the cells. After nocodazole treatment, the cells were examined under the fluorescence microscope. All the microtubules were disappeared in the cell body. There was not any polymerized tubulin. Cytoplasm of the cells was appeared as blurry (Fig. 2). After removal of the nocodazole from the medium, regrowth of the microtubules was very rapid in the cells.

After 5 minutes removal of nocodazole from the medium of the cells, two types of microtubules started to regrow in the cell body. One type of microtubules regrewed at the periphery of the cells. These types of microtubules were twisted on itself. The other types of...
microtubules associated with a nucleating centre (Fig. 3). Second type of microtubule regrowth occurred from a nucleating centre towards cytoplasmic periphery as starlike structures. Also, this type of microtubules was seen more elongated than first type of microtubules.

We examined microtubule changes after 10 minutes removal of nocodazole. Single free microtubules which were centred microtubules appeared very early peripherally located in the cells (Fig. 4). Most microtubules were established as a group which were nucleated from same single centre (Fig. 4). Single centred microtubules were seen more elongated than 5 minutes microtubules. Also, a pretty big blurred area was seen at the microtubule nucleating centre.

After 30 minutes, the observation of the cells showed that there were no free microtubules. The blurred area was quite small at the microtubule nucleating centre and the cells were filled by numerous of elongated hairlike microtubules (Fig. 5). Centre of microtubules was not seen clearly for abundance of microtubules.

4. DISCUSSION

This study has shown that nocodazole treatment for 1 hour was very effective on polymerized microtubules in cells. After nocodazole treatment, blurred areas were seen in cells. It has been suggested that the appearance of blurred cell cytoplasm must be tubulin monomers occurring of the depolymerization of microtubules after nocodazole treatment. This suggestion is supported by the following results in this study. The blurred area in the cells were dramatically reduced after removing nocodazole. Therefore the elongation of microtubules by polymerization of tubulines were increased in the cells. The blurred areas in the cells were not the centre of the cells, which were nucleating centre of microtubules. This result conflicts with previous investigations, reporting. Jashi and Schiebel reported that tubulines polymerized at positive ends of microtubules which was opposite from the nucleating centre of microtubules and also it was at free terminal of microtubules.

The microtubules were allowed to regrowth for various periods of time in the nocodazole free medium. It was shown that there were two kinds of regrowth of cytoplasmic microtubules. Most of microtubules have had a same nucleating centres which was reported as MTOC (Joshi, 1994; Schiebel, 2000). There was not any reported nucleating centres about some of microtubules which are called free microtubules. This second type of microtubules were demonstrated in some researches (Chrgtien et al., 1995). It was thought that MTOC might not be the only one object or structure.
and/or locations of MTOCs, and could be different in the same cells. In classical text books about biology it is explained that microtubules of the cells in mitosis have two nucleating centres which each one of double centrioles are at opposite location. Also many researchers reported that centrioles were MTOCs (Van-Der et al., 1995). Numerous free microtubules at the cell periphery were observed in this work independent MTOCs. Also, some researchers reported similar microtubules (Prescott et al., 1992). Suggesting that MTOCs could be different structures during the beginning of elongation of microtubules. But, after few seconds main MTOC which were nucleating centre of starlike organized microtubules, were appeared to suppress on nucleating centres of peripheral free microtubules. According to our results, suppressor main MTOC can be the centrioles.

The notion that microtubule organization was controlled by factors are distributed throughout the unit cytoplast of the cell as the centrosome, centrosomal proteins, Golgi apparatus, cell membrane and nuclear surface (Tucker et al., 1992; Schmit et al., 1994; Vogl et al., 1995; Rambourg et al., 1996; Salisbury et al., 1999; Schiebel, 2000). Each of them could be recessive MTOC for free microtubules. However, if the centrioles are absent in the cell, any and/or each of those can be dominate MTOC. It is possible that there is an interaction among them. Also, it is possible to hypothesize that formation of microtubules from different structure of MTOC can serve for specific functional purposes.

ACKNOWLEDGMENTS

This research was supported in part by the Basic Sciences Research Grant Committee. So, we many thank to the Scientific and Technical Research Council of Turkey for financial support. We also thank to Laboratory of Medicinal and Aromatic Plant Research Centre and Molecular Biology Division of Biology Department of Anadolu University for their technical equipment.

REFERENCES

Melih Zeytinoğlu, was born in Eskişehir, in 1954. He received B.S. degree in Biology from Hacettepe University, Ankara, in 1981, Proficiency in Medicine degree from Faculty of Medicine, Department of Histology-Embryology at Anadolu University, Eskişehir, in 1986 and Ph.D. degree from University of East Anglia, Department of Cell Biology, Norwich, England, in 1992. He worked in Faculty of Medicine, Department of Histology-Embryology at Anadolu University from 1984 to 1988 as a research and teaching assistant. He has been working in the Department of Biology, Anadolu University since 1988. Research areas of Zeytinoğlu are Molecular Biology of Cancer, Cell and Tissue Culture, Cytoskeleton by fluorescence microscopy.

A. Tansu Koparal, was born in Eskişehir, in 1972. She received B.S. degree in Biology from Anadolu University, Eskişehir, in 1993, M.Sc. degree in Biology from Osmangazi University, Eskişehir, in 1996 and Ph.D. degree from Anadolu University in 2001. She worked in Applied and Research Center for Environmental Problems at Anadolu University from 1993 to 1994 as a research assistant. She has been working in the Department of Biology, Anadolu University since 1994. Research areas of Koparal are Molecular Biology of Cancer, Cell and Tissue Culture, Cytoskeleton by fluorescence microscopy.