Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorAslanargun, Atilla
dc.contributor.authorMammadov, Mammadagha
dc.contributor.authorYazıcı, Berna
dc.contributor.authorYolacan, Senay
dc.date.accessioned2019-10-20T09:31:32Z
dc.date.available2019-10-20T09:31:32Z
dc.date.issued2007
dc.identifier.issn0094-9655
dc.identifier.urihttps://dx.doi.org/10.1080/10629360600564874
dc.identifier.urihttps://hdl.handle.net/11421/17719
dc.descriptionWOS: 000242209300003en_US
dc.description.abstractFor time series forecasting, different artificial neural network (ANN) and hybrid models are recommended as alternatives to commonly used autoregressive integrated moving average (ARIMA) models. Recently, combined models with both linear and nonlinear models have greater attention. In this article, ARIMA, linear ANN, multilayer perceptron (MLP), and radial basis function network (RBFN) models are considered along with various combinations of these models for forecasting tourist arrivals to Turkey. Comparison of forecasting performances shows that models with nonlinear components give a better performance.en_US
dc.language.isoengen_US
dc.publisherTaylor & Francis LTDen_US
dc.relation.isversionof10.1080/10629360600564874en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectTime Seriesen_US
dc.subjectArimaen_US
dc.subjectNeural Networksen_US
dc.subjectBackpropagationen_US
dc.subjectRadial Basis Function Networken_US
dc.subjectHybrid Modelsen_US
dc.titleComparison of ARIMA, neural networks and hybrid models in time series: tourist arrival forecastingen_US
dc.typearticleen_US
dc.relation.journalJournal of Statistical Computation and Simulationen_US
dc.contributor.departmentAnadolu Üniversitesi, Fen Fakültesi, İstatistik Bölümüen_US
dc.identifier.volume77en_US
dc.identifier.issue1en_US
dc.identifier.startpage29en_US
dc.identifier.endpage53en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorYazıcı, Berna


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster