Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorSenyurek, E.
dc.contributor.authorPolat, H.
dc.date.accessioned2019-10-21T20:10:57Z
dc.date.available2019-10-21T20:10:57Z
dc.date.issued2013
dc.identifier.issn1303-9709
dc.identifier.urihttps://hdl.handle.net/11421/19996
dc.description.abstractProviding accurate predictions efficiently is vital for the success of recommender systems. There are various factors that might affect the quality of the predictions and online performance. Similarity metric used to determine neighbors is one of such factors. Therefore, given a set of metrics, determining and utilizing the best one is critical for the overall success of collaborative filtering schemes. We scrutinize several binary similarity measures in terms of accuracy and performance. We conduct various real data-based experiments in order to determine the best similarity measure. Our empirical outcomes show that Yule and Kulczynski metrics provide the best results.en_US
dc.language.isoengen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAccuracyen_US
dc.subjectBinary Similarity Metricen_US
dc.subjectCollaborative Filteringen_US
dc.subjectPerformanceen_US
dc.subjectPredictionen_US
dc.titleEffects of similarity measures on the quality of predictionsen_US
dc.typearticleen_US
dc.relation.journalGazi University Journal of Scienceen_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.volume26en_US
dc.identifier.issue4en_US
dc.identifier.startpage557en_US
dc.identifier.endpage562en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster