Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorBozkurt, Sinem
dc.contributor.authorElibol, G.
dc.contributor.authorGünal, Serkan
dc.contributor.authorYayan, Uğur
dc.date.accessioned2019-10-21T20:10:59Z
dc.date.available2019-10-21T20:10:59Z
dc.date.issued2015
dc.identifier.isbn9781467390965
dc.identifier.urihttps://dx.doi.org/10.1109/INISTA.2015.7276725
dc.identifier.urihttps://hdl.handle.net/11421/20017
dc.descriptionInternational Symposium on Innovations in Intelligent Systems and Applications, INISTA 2015 -- 2 August 2015 through 4 August 2015 -- -- 118180en_US
dc.description.abstractFingerprinting based positioning is commonly used for indoor positioning. In this method, initially a radio map is created using Received Signal Strength (RSS) values that are measured from predefined reference points. During the positioning, the best match between the observed RSS values and existing RSS values in the radio map is established as the predicted position. In the positioning literature, machine learning algorithms have widespread usage in estimating positions. One of the main problems in indoor positioning systems is to find out appropriate machine learning algorithm. In this paper, selected machine learning algorithms are compared in terms of positioning accuracy and computation time. In the experiments, UJIIndoorLoc indoor positioning database is used. Experimental results reveal that k-Nearest Neighbor (k-NN) algorithm is the most suitable one during the positioning. Additionally, ensemble algorithms such as AdaBoost and Bagging are applied to improve the decision tree classifier performance nearly same as k-NN that is resulted as the best classifier for indoor positioningen_US
dc.description.sponsorship1130024 Türkiye Bilimsel ve Teknolojik Araştirma Kurumu, TÜBITAKen_US
dc.description.sponsorshipThis work is supported by The Scientific and Technological Research Council of Turkey (TUBITAK) under grant number 1130024.en_US
dc.language.isoengen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.isversionof10.1109/INISTA.2015.7276725en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAdaboosten_US
dc.subjectBaggingen_US
dc.subjectBayes Neten_US
dc.subjectClassificationen_US
dc.subjectDecision Tree (J48)en_US
dc.subjectIndoor Positioningen_US
dc.subjectLocalizationen_US
dc.subjectMachine Learning Algorithmsen_US
dc.subjectNaïve Bayesen_US
dc.subjectNearest Neighbor (Nn)en_US
dc.subjectReceived Signal Strength (Rss)en_US
dc.subjectRf Mapen_US
dc.subjectSmoen_US
dc.subjectWekaen_US
dc.titleA comparative study on machine learning algorithms for indoor positioningen_US
dc.typeconferenceObjecten_US
dc.relation.journalINISTA 2015 - 2015 International Symposium on Innovations in Intelligent SysTems and Applications, Proceedingsen_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorGünal, Serkan


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster