Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKong, Hui
dc.contributor.authorAkakin, Hatice Çınar
dc.contributor.authorSarma, Sanjay E.
dc.date.accessioned2019-10-21T20:11:31Z
dc.date.available2019-10-21T20:11:31Z
dc.date.issued2013
dc.identifier.issn2168-2267
dc.identifier.issn2168-2275
dc.identifier.urihttps://dx.doi.org/10.1109/TSMCB.2012.2228639
dc.identifier.urihttps://hdl.handle.net/11421/20242
dc.descriptionWOS: 000327647500018en_US
dc.descriptionPubMed ID: 23757570en_US
dc.description.abstractIn this paper, we propose a generalized Laplacian of Gaussian (LoG) (gLoG) filter for detecting general elliptical blob structures in images. The gLoG filter can not only accurately locate the blob centers but also estimate the scales, shapes, and orientations of the detected blobs. These functions can be realized by generalizing the common 3-D LoG scale-space blob detector to a 5-D gLoG scale-space one, where the five parameters are image-domain coordinates (x, y), scales (sigma(x), sigma(y)), and orientation (theta), respectively. Instead of searching the local extrema of the image's 5-D gLoG scale space for locating blobs, a more feasible solution is given by locating the local maxima of an intermediate map, which is obtained by aggregating the log-scale-normalized convolution responses of each individual gLoG filter. The proposed gLoG-based blob detector is applied to both biomedical images and natural ones such as general road-scene images. For the biomedical applications on pathological and fluorescent microscopic images, the gLoG blob detector can accurately detect the centers and estimate the sizes and orientations of cell nuclei. These centers are utilized as markers for a watershed-based touching-cell splitting method to split touching nuclei and counting cells in segmentation-free images. For the application on road images, the proposed detector can produce promising estimation of texture orientations, achieving an accurate texture-based road vanishing point detection method. The implementation of our method is quite straightforward due to a very small number of tunable parameters.en_US
dc.language.isoengen_US
dc.publisherIEEE-Inst Electrical Electronics Engineers Incen_US
dc.relation.isversionof10.1109/TSMCB.2012.2228639en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBlob Detectionen_US
dc.subjectGeneralized Laplacian Of Gaussian (Log) (Glog)en_US
dc.subjectNuclei (Cell) Splittingen_US
dc.subjectScale Spaceen_US
dc.subjectTexture Orientation Estimationen_US
dc.subjectVanishing Point Detectionen_US
dc.titleA Generalized Laplacian of Gaussian Filter for Blob Detection and Its Applicationsen_US
dc.typearticleen_US
dc.relation.journalIEEE Transactions On Cyberneticsen_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümüen_US
dc.identifier.volume43en_US
dc.identifier.issue6en_US
dc.identifier.startpage1719en_US
dc.identifier.endpage1733en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster