Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorBenligiray, Burak
dc.date.accessioned2019-10-21T20:41:25Z
dc.date.available2019-10-21T20:41:25Z
dc.date.issued2018
dc.identifier.isbn9781538615010
dc.identifier.urihttps://dx.doi.org/10.1109/SIU.2018.8404505
dc.identifier.urihttps://hdl.handle.net/11421/20780
dc.descriptionAselsan;et al.;Huawei;IEEE Signal Processing Society;IEEE Turkey Section;Netasen_US
dc.description26th IEEE Signal Processing and Communications Applications Conference, SIU 2018 -- 2 May 2018 through 5 May 2018 -- -- 137780en_US
dc.description.abstractA large part of the written content on the Internet is composed of social media posts, articles written for content platforms and user comments. In contrast to the content prepared for print media, these types of texts include a large number of writing errors. Automating the detection and correction of writing errors in content created for commercial purposes would decrease editing costs dramatically. Although word-level language models have performed well in processing analytic languages, they are not ideal for agglutinative languages, which include Turkish. Models built on smaller elements such as morphemes or characters are more suitable for agglutinative languages. In this study, we propose a method that uses a character-level language model to correct writing errors in Turkish. Character-level text generation is used to calculate the probabilities of possible syntaxes. The syntax that is the most probable is inferred to be correct. The proposed method is implemented to correct errors in writing the conjunction 'de' and the suffix '-de'en_US
dc.language.isoturen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.isversionof10.1109/SIU.2018.8404505en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCharacter-Level Language Modelen_US
dc.subjectNatural Language Processingen_US
dc.subjectRecurrent Neural Networksen_US
dc.subjectWriting Errorsen_US
dc.titleCorrecting writing errors in turkish with a character-level neural language model [Dahi anlamindaki de ayri yazilir: Türkçe yazim hatalarinin karakter-seviyeli bir sinirsel dil modeli ile düzeltilmesi]en_US
dc.typeconferenceObjecten_US
dc.relation.journal26th IEEE Signal Processing and Communications Applications Conference, SIU 2018en_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümüen_US
dc.identifier.startpage1en_US
dc.identifier.endpage4en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US]
dc.contributor.institutionauthorBenligiray, Burak


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster