dc.contributor.author | Tasdemir, Ozgur | |
dc.contributor.author | Karabacak, Fatih | |
dc.date.accessioned | 2020-07-09T20:58:56Z | |
dc.date.available | 2020-07-09T20:58:56Z | |
dc.date.issued | 2020 | |
dc.identifier.issn | 0092-7872 | |
dc.identifier.issn | 1532-4125 | |
dc.identifier.uri | https://doi.org/10.1080/00927872.2019.1677685 | |
dc.identifier.uri | https://hdl.handle.net/11421/24103 | |
dc.description | Tasdemir, Ozgur/0000-0003-2500-8255 | en_US |
dc.description | WOS: 000492108100001 | en_US |
dc.description.abstract | We say an R-module M has the generalized summand sum property (GSSP), if the sum of any two direct summands is isomorphic to a direct summand of M. This is dual notion to the generalized summand intersection property of modules, and also the class of modules having the GSSP is a proper generalization of the class of modules having the SSP. in this note, the characterization of this property over rings and modules is investigated. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Taylor & Francis Inc | en_US |
dc.relation.isversionof | 10.1080/00927872.2019.1677685 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Direct summand | en_US |
dc.subject | GSSP | en_US |
dc.subject | injective module | en_US |
dc.subject | SSP | en_US |
dc.title | Generalized SSP-modules | en_US |
dc.type | article | en_US |
dc.relation.journal | Communications in Algebra | en_US |
dc.contributor.department | Anadolu Üniversitesi | en_US |
dc.identifier.volume | 48 | en_US |
dc.identifier.issue | 3 | en_US |
dc.identifier.startpage | 1068 | en_US |
dc.identifier.endpage | 1078 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |