Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorYavuz, Hasan Serhan
dc.contributor.authorÇevikalp, Hakan
dc.contributor.authorBarkana, Atalay
dc.date.accessioned2019-10-18T18:43:48Z
dc.date.available2019-10-18T18:43:48Z
dc.date.issued2006
dc.identifier.isbn978-1-4244-0238-0
dc.identifier.urihttps://hdl.handle.net/11421/10428
dc.descriptionIEEE 14th Signal Processing and Communications Applications -- APR 16-19, 2006 -- Antalya, TURKEYen_US
dc.descriptionWOS: 000245347800041en_US
dc.description.abstractIn this paper, we propose two variations of vector based class-featuring information compression (CLAFIC) methods which can be applied directly to the gray level digital image data. In these methods, gray level digital image matrix data is processed without any explicit transformation into the vector form. Therefore, we called them as two-dimensional CLAFIC methods. Evaluation of correlation and covariance matrices from the matrix forms of the image data speeds up the training and test phases of image recognition applications. Experimental results on the AR and the ORL face databases demonstrate that the proposed two-dimensional CLAFIC methods are more efficient than the conventional CLAFIC and some other methods given in the paper.en_US
dc.description.sponsorshipIEEEen_US
dc.language.isoturen_US
dc.publisherIEEEen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleTwo-dimensional CLAFIC methods for image recognitionen_US
dc.typeconferenceObjecten_US
dc.relation.journal2006 IEEE 14th Signal Processing and Communications Applications, Vols 1 and 2en_US
dc.contributor.departmentAnadolu Üniversitesien_US
dc.contributor.authorIDCevikalp, Hakan/0000-0002-1708-8817en_US
dc.identifier.startpage160en_US
dc.identifier.endpage+en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorBarkana, Atalay


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster