Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorAydın, Dursun
dc.contributor.editorArdil, C
dc.date.accessioned2019-10-18T18:44:00Z
dc.date.available2019-10-18T18:44:00Z
dc.date.issued2007
dc.identifier.issn1307-6884
dc.identifier.urihttps://hdl.handle.net/11421/10500
dc.descriptionConference of the World-Academy-of-Science-Engineering-and-Technology -- DEC 14-16, 2007 -- Bangkok, THAILANDen_US
dc.descriptionWOS: 000259869900138en_US
dc.description.abstractThis paper study about using of nonparametric models for Gross National Product data in Turkey and Stanford heart transplant data. It is discussed two nonparametric techniques called smoothing spline and kernel regression. The main goal is to compare the techniques used for prediction of the nonparametric regression models. According to the results of numerical studies, it is concluded that smoothing spline regression estimators are better than those of the kernel regression.en_US
dc.description.sponsorshipWorld Acad Sci Engn & Technolen_US
dc.language.isoengen_US
dc.publisherWorld Acad Sci, Eng & Tech-Waseten_US
dc.relation.ispartofseriesProceedings of World Academy of Science Engineering and Technology
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectKernel Regressionen_US
dc.subjectNonparametric Modelsen_US
dc.subjectPredictionen_US
dc.subjectSmoothing Splineen_US
dc.titleA Comparison of the Nonparametric Regression Models using Smoothing Spline and Kernel Regressionen_US
dc.typeconferenceObjecten_US
dc.relation.journalProceedings of World Academy of Science, Engineering and Technology, Vol 26, Parts 1 and 2, December 2007en_US
dc.contributor.departmentAnadolu Üniversitesien_US
dc.identifier.volume26en_US
dc.identifier.startpage730en_US
dc.identifier.endpage734en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster