dc.contributor.author | Aydın, Dursun | |
dc.contributor.editor | Ardil, C | |
dc.date.accessioned | 2019-10-18T18:44:00Z | |
dc.date.available | 2019-10-18T18:44:00Z | |
dc.date.issued | 2007 | |
dc.identifier.issn | 1307-6884 | |
dc.identifier.uri | https://hdl.handle.net/11421/10500 | |
dc.description | Conference of the World-Academy-of-Science-Engineering-and-Technology -- DEC 14-16, 2007 -- Bangkok, THAILAND | en_US |
dc.description | WOS: 000259869900138 | en_US |
dc.description.abstract | This paper study about using of nonparametric models for Gross National Product data in Turkey and Stanford heart transplant data. It is discussed two nonparametric techniques called smoothing spline and kernel regression. The main goal is to compare the techniques used for prediction of the nonparametric regression models. According to the results of numerical studies, it is concluded that smoothing spline regression estimators are better than those of the kernel regression. | en_US |
dc.description.sponsorship | World Acad Sci Engn & Technol | en_US |
dc.language.iso | eng | en_US |
dc.publisher | World Acad Sci, Eng & Tech-Waset | en_US |
dc.relation.ispartofseries | Proceedings of World Academy of Science Engineering and Technology | |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Kernel Regression | en_US |
dc.subject | Nonparametric Models | en_US |
dc.subject | Prediction | en_US |
dc.subject | Smoothing Spline | en_US |
dc.title | A Comparison of the Nonparametric Regression Models using Smoothing Spline and Kernel Regression | en_US |
dc.type | conferenceObject | en_US |
dc.relation.journal | Proceedings of World Academy of Science, Engineering and Technology, Vol 26, Parts 1 and 2, December 2007 | en_US |
dc.contributor.department | Anadolu Üniversitesi | en_US |
dc.identifier.volume | 26 | en_US |
dc.identifier.startpage | 730 | en_US |
dc.identifier.endpage | 734 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |