dc.contributor.author | Bilge, Ayşe Hümeyra | |
dc.contributor.author | Dereli, Tekin | |
dc.contributor.author | Koçak, Şahin | |
dc.date.accessioned | 2019-10-18T18:44:35Z | |
dc.date.available | 2019-10-18T18:44:35Z | |
dc.date.issued | 1996 | |
dc.identifier.issn | 0377-9017 | |
dc.identifier.uri | https://dx.doi.org/10.1007/BF00943282 | |
dc.identifier.uri | https://hdl.handle.net/11421/10656 | |
dc.description | WOS: A1996TY84900008 | en_US |
dc.description.abstract | Strongly self-dual Yang-Mills fields in even-dimensional spaces are characterised by a set of constraints on the eigenvalues of the Yang-Mills fields F-mu nu. We derive a topological bound on R(8), integral(M)(F, F)(2) greater than or equal to k integral(M) p(1)(2), where p(1) is the first Pontryagin class of the SO(n) Yang-Mills bundle, and k is a constant. Strongly self-dual Yang-Mills fields realise the lower bound. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Kluwer Academic Publ | en_US |
dc.relation.isversionof | 10.1007/BF00943282 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Self-Duality | en_US |
dc.subject | Yang-Mills Fields | en_US |
dc.title | Self-dual Yang-Mills fields in eight dimensions | en_US |
dc.type | article | en_US |
dc.relation.journal | Letters in Mathematical Physics | en_US |
dc.contributor.department | Anadolu Üniversitesi | en_US |
dc.contributor.authorID | Bilge, Ayse Humeyra/0000-0002-6043-0833; Dereli, Tekin/0000-0002-6244-6054 | en_US |
dc.identifier.volume | 36 | en_US |
dc.identifier.issue | 3 | en_US |
dc.identifier.startpage | 301 | en_US |
dc.identifier.endpage | 309 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.contributor.institutionauthor | Koçak, Şahin | |