dc.contributor.author | Uygur, Kabael Tangül | |
dc.date.accessioned | 2019-10-19T17:27:30Z | |
dc.date.available | 2019-10-19T17:27:30Z | |
dc.date.issued | 2005 | |
dc.identifier.issn | 1300-0098 | |
dc.identifier.uri | http://www.trdizin.gov.tr/publication/paper/detail/TXpnNE9EWTI= | |
dc.identifier.uri | https://hdl.handle.net/11421/14600 | |
dc.description.abstract | In this work we classify the irreducible SU(2) representations of $\Pi_1 (S^3\backslash k_n)$ where $k_n$ is an integer n tangle and as a result we have proved the following theorem: Let n be an odd integer then ${\cal R}$* $(\Pi_1 (S^3\backslash k_n)) /SO (3)$ is the disjoint union of n open arcs where ${\cal R}$* $\Pi_1 (S^3\backslash k_n))$ is the space of irreducible representations. | en_US |
dc.description.abstract | In this work we classify the irreducible SU(2) representations of $\Pi_1 (S^3\backslash k_n)$ where $k_n$ is an integer n tangle and as a result we have proved the following theorem: Let n be an odd integer then ${\cal R}$* $(\Pi_1 (S^3\backslash k_n)) /SO (3)$ is the disjoint union of n open arcs where ${\cal R}$* $\Pi_1 (S^3\backslash k_n))$ is the space of irreducible representations. | en_US |
dc.language.iso | eng | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Matematik | en_US |
dc.title | SU(2) representations of the groups of integer tangles | en_US |
dc.type | other | en_US |
dc.relation.journal | Turkish Journal of Mathematics | en_US |
dc.contributor.department | Anadolu Üniversitesi, Eğitim Fakültesi | en_US |
dc.identifier.volume | 29 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 99 | en_US |
dc.identifier.endpage | 109 | en_US |
dc.relation.publicationcategory | Diğer | en_US] |