dc.contributor.author | Candemir, Nuray | |
dc.contributor.author | Tanışlı, Murat | |
dc.contributor.author | Özdaş, Kudret | |
dc.contributor.author | Demir, Süleyman | |
dc.date.accessioned | 2019-10-20T09:03:08Z | |
dc.date.available | 2019-10-20T09:03:08Z | |
dc.date.issued | 2008 | |
dc.identifier.issn | 0932-0784 | |
dc.identifier.uri | https://hdl.handle.net/11421/16637 | |
dc.description | WOS: 000254301600003 | en_US |
dc.description.abstract | In this study, after introducing the hyperbolic octonionic (counteroctonion) algebra, which is also expressed in the sub-algebra of sedenions, and differential operator, Proca-Maxwell equations and relevant field equations are derived in compact, simpler and elegant forms using hyperbolic octonions. This formalism demonstrates that Proca-Maxwell equations can be expressed in a single equation. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Verlag Z Naturforsch | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Hyperbolic Octonion | en_US |
dc.subject | Proca Field Equation | en_US |
dc.subject | Proca-Maxwell Equations | en_US |
dc.title | Hyperbolic octonionic Proca-Maxwell equations | en_US |
dc.type | article | en_US |
dc.relation.journal | Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences | en_US |
dc.contributor.department | Anadolu Üniversitesi, Fen Fakültesi, Fizik Bölümü | en_US |
dc.identifier.volume | 63 | en_US |
dc.identifier.issue | 1.Şub | en_US |
dc.identifier.startpage | 15 | en_US |
dc.identifier.endpage | 18 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.contributor.institutionauthor | Candemir, Nuray | |
dc.contributor.institutionauthor | Tanışlı, Murat | |
dc.contributor.institutionauthor | Demir, Süleyman | |