dc.contributor.author | Demir, Süleyman | |
dc.contributor.author | Tanışlı, Murat | |
dc.contributor.author | Tolan, Tülay | |
dc.date.accessioned | 2019-10-20T09:03:33Z | |
dc.date.available | 2019-10-20T09:03:33Z | |
dc.date.issued | 2013 | |
dc.identifier.issn | 0217-751X | |
dc.identifier.issn | 1793-656X | |
dc.identifier.uri | https://dx.doi.org/10.1142/S0217751X13501121 | |
dc.identifier.uri | https://hdl.handle.net/11421/16740 | |
dc.description | WOS: 000323567400012 | en_US |
dc.description.abstract | Generalized field equations of linear gravity are formulated on the basis of octons. When compared to the other eight-component noncommutative hypercomplex number systems, it is demonstrated that associative octons with scalar, pseudoscalar, pseudovector and vector values present a convenient and capable tool to describe the Maxwell-Proca-like field equations of gravitoelectromagnetism in a compact and simple way. Introducing massive graviton and gravitomagnetic monopole terms, the generalized gravitational wave equation and Klein-Gordon equation for linear gravity are also developed. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | World Scientific Publ Co Pte LTD | en_US |
dc.relation.isversionof | 10.1142/S0217751X13501121 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Octons | en_US |
dc.subject | Clifford Algebra | en_US |
dc.subject | Gravitoelectromagnetism | en_US |
dc.subject | Proca-Maxwell Equation | en_US |
dc.title | Octonic Gravitational Field Equations | en_US |
dc.type | article | en_US |
dc.relation.journal | International Journal of Modern Physics A | en_US |
dc.contributor.department | Anadolu Üniversitesi, Fen Fakültesi, Fizik Bölümü | en_US |
dc.identifier.volume | 28 | en_US |
dc.identifier.issue | 21 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.contributor.institutionauthor | Demir, Süleyman | |
dc.contributor.institutionauthor | Tanışlı, Murat | |