Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKuş, Nihal
dc.contributor.authorHenriques, Marta Sofia
dc.contributor.authorPaixao, Jose Antonio
dc.contributor.authorLapinski, Leszek
dc.contributor.authorFausto, Rui
dc.date.accessioned2019-10-20T09:13:33Z
dc.date.available2019-10-20T09:13:33Z
dc.date.issued2014
dc.identifier.issn1089-5639
dc.identifier.urihttps://dx.doi.org/10.1021/jp506354t
dc.identifier.urihttps://hdl.handle.net/11421/16965
dc.descriptionWOS: 000342396100008en_US
dc.descriptionPubMed ID: 25144919en_US
dc.description.abstractThe crystal structure of 3-quinolinecarboxaldehyde (3QC) has been solved, and the compound has been shown to crystallize in the space group P2(1)/c (monoclinic) with a = 6.306(4), b = 18.551(11), c = 6.999(4) angstrom, beta = 106.111(13)degrees, and Z = 4. The crystals were found to exhibit pseudomerohedral twinning with a twin law corresponding to a two-fold rotation around the monoclinic (100) reciprocal lattice axis (or [4 0 1] in direct space). Individual molecules adopt the syn conformation in the crystal, with the oxygen atom of the aldehyde substituent directed toward the same side of the ring nitrogen atom. In the gas phase, the compound exists in two nearly isoenergetic conformers (syn and anti), which could be successfully trapped in solid argon at 10 K, and their infrared spectra are registered and interpreted. Upon in situ irradiation of matrix-isolated 3QC with UV light (lambda > 315 nm), significant reduction of the population of the less stable anti conformer was observed, while that of the conformational ground state (syn conformer) increased, indicating occurrence of the anti -> syn isomerization. Upon irradiation at higher energy (lambda > 235 nrn), the syn -> anti reverse photoreaction was observed. Interpretation of the structural, spectroscopic, and photochemical experimental data received support from quantum chemical theoretical results obtained at both DFT/B3LYP (including TD-DFT investigation of excited states) and MP2 levels, using the 6-311++G(d,p) basis set.en_US
dc.description.sponsorshipFundacao para a Ciencia e a Tecnologia (FCT), Portuguese Agency for Scientific Research [PEst-OE/QUI/UI0313/2014, PEst-OEFIS/UI0036/2014]; FCT [SFRH/BPD/88372/2012]; QREN-Mais Centro Project [ICT_2009_02_012_1890]; Academic Computer Center "Cyfronet", Krakow, Poland [KBN/SGI_ORIGIN 2000/UJ/044/1999]en_US
dc.description.sponsorshipCQC and CEMDRX are supported by the Fundacao para a Ciencia e a Tecnologia (FCT), Portuguese Agency for Scientific Research, through Projects PEst-OE/QUI/UI0313/2014 and PEst-OEFIS/UI0036/2014. N.K. acknowledges FCT for the award of a postdoctoral grant (SFRH/BPD/88372/2012). Access to XRD facilities of TAIL-UC funded under QREN-Mais Centro Project ICT_2009_02_012_1890 is gratefully acknowledged. The authors also thank Dr. Agnieszka Kaczor and the Academic Computer Center "Cyfronet", Krakow, Poland (Grant KBN/SGI_ORIGIN 2000/UJ/044/1999), for providing us the required computing time to undertake the most demanding calculations reported in the present work.en_US
dc.language.isoengen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.isversionof10.1021/jp506354ten_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleCrystal Structure, Matrix-Isolation FTIR, and UV-Induced Conformational Isomerization of 3-Quinolinecarboxaldehydeen_US
dc.typearticleen_US
dc.relation.journalJournal of Physical Chemistry Aen_US
dc.contributor.departmentAnadolu Üniversitesi, Fen Fakültesi, Fizik Bölümüen_US
dc.identifier.volume118en_US
dc.identifier.issue38en_US
dc.identifier.startpage8708en_US
dc.identifier.endpage8716en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorKuş, Nihal


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster