Gold-silver nanoclusters having dipicolinic acid imprinted nanoshell for Bacillus cereus spores recognition
Göster/ Aç
Erişim
info:eu-repo/semantics/closedAccessTarih
2009Yazar
Gültekin, AytaçEmir Diltemiz, Sibel
Ersöz, Arzu
Sarıözlü, Nalan Yılmaz
Denizli, Adil
Say, Rıdvan
Üst veri
Tüm öğe kaydını gösterÖzet
Molecular imprinted polymers (MIPs) as a recognition element for sensors are increasingly of interest and MIP nanoclusters have started to appear in the literature. in this study, we have proposed a novel thiol ligand-capping method with polymerizable methacryloylamidocysteine (MAC) attached to gold-silver nanoclusters, reminiscent of a self-assembled monolayer and have reconstructed surface shell by synthetic host polymers based on molecular imprinting method for recognition. In this method, methacryloyl iminodiacetic acid-chrome (MAIDA-Cr(III)) has been used as a new metal-chelating monomer via metal coordination-chelation interactions and dipicolinic acid (DPA) which is a main participant of Bacillus spores has been used as a template. Nanoshell sensors with templates give a cavity that is selective for DPA. The DPA can simultaneously chelate to Cr(III) metal ion and fit into the shape-selective cavity. Thus, the interaction between Cr(III) ion and free coordination spheres has an effect on the binding ability of the gold-silver nanoclusters nanosensor. The binding affinity of the DPA imprinted nanoclusters has been investigated by using the Langmuir and Scatchard methods and determined affinity constants (K-affinity) were found as 18 x 10(6) mol L-1 and 9 x 10(6) mol L-1, respectively
Kaynak
TalantaCilt
78Sayı
4.MayKoleksiyonlar
- Makale Koleksiyonu [1058]
- PubMed İndeksli Yayınlar Koleksiyonu [1498]
- Scopus İndeksli Yayınlar Koleksiyonu [8325]
- WoS İndeksli Yayınlar Koleksiyonu [7605]