Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorAcıtaş, Şükrü
dc.contributor.authorAladağ, Çağdaş Hakan
dc.contributor.authorŞenoğlu, Birdal
dc.date.accessioned2019-10-20T09:31:15Z
dc.date.available2019-10-20T09:31:15Z
dc.date.issued2019
dc.identifier.issn0951-8320
dc.identifier.issn1879-0836
dc.identifier.urihttps://dx.doi.org/10.1016/j.ress.2018.07.024
dc.identifier.urihttps://hdl.handle.net/11421/17642
dc.descriptionWOS: 000455693700010en_US
dc.description.abstractThree-parameter Weibull is one of the most popular and most widely-used distribution in many fields of science. Therefore, many studies have been conducted concerning the statistical inferences of the parameters of Weibull distribution. In general, the maximum likelihood (ML) methodology is used in the estimation process of unknown parameters. In this study, the ML estimation of the parameters of Weibull distribution is considered using particle swarm optimization (PSO). As in other heuristic optimization methods, the performance of PSO is affected by initial conditions. The novelty of this study comes from the fact that we propose a new adaptive search space based on confidence intervals in PSO. The modified maximum likelihood (MML) estimators are utilized for constructing the confidence intervals. MML based confidence intervals allow a narrower search space for the parameters of Weibull distribution than the search space used in the literature. Therefore, the performance of PSO increases, since the search space is wisely narrowed. In order to show the performance of the proposed approach, an extensive Monte-Carlo simulation study is conducted. Simulation results show that the proposed approach works well. In addition, real world data is analyzed to show implementation of the proposed method.en_US
dc.language.isoengen_US
dc.publisherElsevier Sci LTDen_US
dc.relation.isversionof10.1016/j.ress.2018.07.024en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectParticle Swarm Optimizationen_US
dc.subjectSearch Spaceen_US
dc.subjectWeibull Distributionen_US
dc.subjectMaximum Likelihooden_US
dc.subjectMonte-Carlo Simulationen_US
dc.subjectStrengths Of Glass Fibreen_US
dc.titleA new approach for estimating the parameters of Weibull distribution via particle swarm optimization: An application to the strengths of glass fibre Cheek tor dataen_US
dc.typearticleen_US
dc.relation.journalReliability Engineering & System Safetyen_US
dc.contributor.departmentAnadolu Üniversitesi, Fen Fakültesi, İstatistik Bölümüen_US
dc.identifier.volume183en_US
dc.identifier.startpage116en_US
dc.identifier.endpage127en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster