Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorYazıcı, Berna
dc.contributor.authorMemmedli, Memmedaga
dc.contributor.authorAslanargun, Atilla
dc.contributor.authorAsma, Senay
dc.date.accessioned2019-10-20T09:31:29Z
dc.date.available2019-10-20T09:31:29Z
dc.date.issued2010
dc.identifier.issn0941-0643
dc.identifier.urihttps://dx.doi.org/10.1007/s00521-010-0422-4
dc.identifier.urihttps://hdl.handle.net/11421/17709
dc.descriptionWOS: 000283081400008en_US
dc.description.abstractIt is known from the scientific researches that artificial neural networks are alternatives of statistical methods such as regression analysis and classification in recent years. Since multi-layer backpropagation neural network models are nonlinear, it is expected that the neural network models should make better classifications and predictions. The studies on this subject support that idea. In this study, a macro-economic problem on rescheduling or non-rescheduling of the countries' international debts is taken into account. Among the statistical methods, logistic and probit regression, and the different neural network backpropagation algorithms are applied and comparisons are made. Evaluations and suggestions are made depending on the results and different neural network architecture.en_US
dc.description.sponsorshipAnadolu University Eskisehir, Turkeyen_US
dc.description.sponsorshipThis study was supported by the Research Fund of Anadolu University Eskisehir, Turkey. We appreciate to Prof. Dr. Ilyas SIKLAR from Department of Economics for his very valuable comments.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.relation.isversionof10.1007/s00521-010-0422-4en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial Neural Networken_US
dc.subjectBackpropagation Algorithmen_US
dc.subjectConjugate Gradient Methoden_US
dc.subjectQuasi-Newton Methoden_US
dc.subjectLogistic And Probit Regressionen_US
dc.subjectRescheduling And Non-Rescheduling Of The International Debtsen_US
dc.titleAnalysis of international debt problem using artificial neural networks and statistical methodsen_US
dc.typearticleen_US
dc.relation.journalNeural Computing & Applicationsen_US
dc.contributor.departmentAnadolu Üniversitesi, Fen Fakültesi, İstatistik Bölümüen_US
dc.identifier.volume19en_US
dc.identifier.issue8en_US
dc.identifier.startpage1207en_US
dc.identifier.endpage1216en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorYazıcı, Berna


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster