Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorYenilmez, İsmail
dc.contributor.authorMert Kantar, Yeliz
dc.contributor.authorAcıtaş, Şükrü
dc.date.accessioned2019-10-20T09:31:30Z
dc.date.available2019-10-20T09:31:30Z
dc.date.issued2018
dc.identifier.issn1304-7205
dc.identifier.issn1304-7191
dc.identifier.urihttps://hdl.handle.net/11421/17713
dc.descriptionWOS: 000437057300017en_US
dc.description.abstractFor the censored regression model, it is well-known that while classical least squares estimation yields biased and nonconsistent estimator, maximum likelihood estimator (MLE) is consistent and efficient. Tobit estimator (Tobit model) based on MLE of normal error distribution is commonly-used estimation method for estimating censored regression in econometric literature. However, while the Tobit estimator works well for normal error distribution, its estimates may be inefficient in the case of non-normal errors. To solve this problem, different error distributions for the censored regression model have been proposed and tested in the literature. In this study, we consider the censored regression model based on the generalized logistic distribution. Generalized logistic distribution is very flexible distribution and approximates normal distribution for the special parameter cases. The considered estimator for the censored regression is evaluated by means of a simulation study designed in different combination of various error distributions and sample sizes. The results of the simulation show that the estimator of the censored regression model based on the generalized logistic distribution provides good performance for different error distributions and it is particularly good for small sample sizes. Moreover, when it is compared to classical Tobit estimator, efficiency loss of the considered estimator is very small for normal error distribution.en_US
dc.description.sponsorshipAnadolu University Scientific Research Projects Commission [1610F661, 1705F419]en_US
dc.description.sponsorshipThis study was supported by Anadolu University Scientific Research Projects Commission under the grant no: 1610F661 and also 1705F419.en_US
dc.language.isoengen_US
dc.publisherYildiz Technical Universityen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCensored Dependent Variableen_US
dc.subjectCensored Regression Modelen_US
dc.subjectGeneralized Logistic Distributionen_US
dc.subjectMaximum Likelihood Estimationen_US
dc.titleEstimation of Censored Regression Model in the Case of Non-Normal Erroren_US
dc.typearticleen_US
dc.relation.journalSigma Journal of Engineering and Natural Sciences-Sigma Muhendislik ve Fen Bilimleri Dergisien_US
dc.contributor.departmentAnadolu Üniversitesi, Fen Fakültesi, İstatistik Bölümüen_US
dc.identifier.volume36en_US
dc.identifier.issue2en_US
dc.identifier.startpage513en_US
dc.identifier.endpage521en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster