Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorYazıcı, B.
dc.contributor.authorYolacan, S.
dc.contributor.authorAğaoğlu, E.
dc.date.accessioned2019-10-20T09:31:33Z
dc.date.available2019-10-20T09:31:33Z
dc.date.issued2005
dc.identifier.issn1109-2769
dc.identifier.urihttps://hdl.handle.net/11421/17726
dc.description.abstractThe least squares estimators of the regression coefficients are the best linear unbiased estimators. That is, of all possible estimators that are both linear functions of the data and unbiased for the parameters being estimated, the least squares estimators have the smallest variance. One of the assumptions of linear regression model is the independency of explanatory variables. If those variables are correlated with each other multicollinearity problem occurs. In the presence of multicollinearity minimum variance may be unacceptably large. Ridge regression, a biased regression method used in multicollinearity conditions builds on the fact that a singular square matrix can be made nonsingular by adding a constant to the diagonal of the matrix. In this study ridge regression and artificial neural network algorithm, that does not require any assumption, are applied on two different economic data sets with multicollinearity. For both of the models, the results are interpreted and compared.en_US
dc.language.isoengen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial Neural Networksen_US
dc.subjectMulticollinearityen_US
dc.subjectRidge Regressionen_US
dc.titleComparison of artificial neural networks and ridge regression for two different economic problemsen_US
dc.typearticleen_US
dc.relation.journalWSEAS Transactions on Mathematicsen_US
dc.contributor.departmentAnadolu Üniversitesi, Fen Fakültesi, İstatistik Bölümüen_US
dc.identifier.volume4en_US
dc.identifier.issue3en_US
dc.identifier.startpage163en_US
dc.identifier.endpage169en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster