Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorMemmedli, Memmedaga
dc.contributor.authorÖzdemir, Özer
dc.date.accessioned2019-10-20T09:31:35Z
dc.date.available2019-10-20T09:31:35Z
dc.date.issued2009
dc.identifier.isbn9789604741311
dc.identifier.urihttps://hdl.handle.net/11421/17736
dc.descriptionUniversita Degli Studi Di Genovaen_US
dc.description8th WSEAS International Conference on System Science and Simulation in Engineering, ICOSSSE '09 -- 17 October 2009 through 19 October 2009 -- Genova -- 82292en_US
dc.description.abstractDeciding length of intervals and choosing performance measures have important issues to forecast fuzzy time series. Many forecasting studies accept MSE(Mean squared error) for performance measure and use only one kind of length of intervals such as 1000 without showing any reason and this situation significantly affects forecasting results. This study applies a backpropagation neural network to forecast fuzzy time series with different performance measures and length of intervals. ISE (Istanbul stock exchange) national-100 index for the years 2001-2008 is used for forecasting target. MSE, RMSE(Root mean squared error), MAE(Mean absolute error) and MAPE(Mean absolute percentage error) for performance measures are compared for different length of intervals. The experimental results show that 300 as length of intervals outperforms other lengths of intervals in overall performance of MSE, RMSE, MAE and MAPE for forecasting ISE national-100 index.en_US
dc.language.isoengen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectForecastingen_US
dc.subjectFuzzy Time Seriesen_US
dc.subjectIse National-100 Indexen_US
dc.subjectLength Of Intervalsen_US
dc.subjectNeural Networksen_US
dc.subjectPerformance Measuresen_US
dc.titleA comparison study of performance measures and length of intervals in fuzzy time series by neural networksen_US
dc.typeconferenceObjecten_US
dc.relation.journalProceedings of the 8th WSEAS International Conference on System Science and Simulation in Engineering, ICOSSSE '09en_US
dc.contributor.departmentAnadolu Üniversitesi, Fen Fakültesi, İstatistik Bölümüen_US
dc.identifier.startpage211en_US
dc.identifier.endpage214en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster