Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKılıç, Mehmet
dc.contributor.authorKoçak, Şahin
dc.date.accessioned2019-10-20T14:28:08Z
dc.date.available2019-10-20T14:28:08Z
dc.date.issued2016
dc.identifier.issn0001-8708
dc.identifier.issn1090-2082
dc.identifier.urihttps://dx.doi.org/10.1016/j.aim.2016.05.026
dc.identifier.urihttps://hdl.handle.net/11421/18022
dc.descriptionWOS: 000382424900018en_US
dc.description.abstractWe prove that a nonempty closed and geodesically convex subset of the l(infinity) plane R-infinity(2) is hyperconvex and we characterize the tight spans of arbitrary subsets of R-infinity(2) via this property: Given any nonempty X subset of R-infinity(2), a closed, geodesically convex and minimal subset Y subset of R-infinity(2) containing X is isometric to the tight span T(X) of Xen_US
dc.language.isoengen_US
dc.publisherAcademic Press Inc Elsevier Scienceen_US
dc.relation.isversionof10.1016/j.aim.2016.05.026en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectTight Spanen_US
dc.subjectHyperconvexityen_US
dc.subjectInjective Envelopeen_US
dc.subjectManhattan Planeen_US
dc.titleTight span of subsets of the plane with the maximum metricen_US
dc.typearticleen_US
dc.relation.journalAdvances in Mathematicsen_US
dc.contributor.departmentAnadolu Üniversitesi, Fen Fakültesi, Matematik Bölümüen_US
dc.identifier.volume301en_US
dc.identifier.startpage693en_US
dc.identifier.endpage710en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US]
dc.contributor.institutionauthorKoçak, Şahin


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster