dc.contributor.author | Kılıç, Mehmet | |
dc.contributor.author | Koçak, Şahin | |
dc.date.accessioned | 2019-10-20T14:28:08Z | |
dc.date.available | 2019-10-20T14:28:08Z | |
dc.date.issued | 2016 | |
dc.identifier.issn | 0001-8708 | |
dc.identifier.issn | 1090-2082 | |
dc.identifier.uri | https://dx.doi.org/10.1016/j.aim.2016.05.026 | |
dc.identifier.uri | https://hdl.handle.net/11421/18022 | |
dc.description | WOS: 000382424900018 | en_US |
dc.description.abstract | We prove that a nonempty closed and geodesically convex subset of the l(infinity) plane R-infinity(2) is hyperconvex and we characterize the tight spans of arbitrary subsets of R-infinity(2) via this property: Given any nonempty X subset of R-infinity(2), a closed, geodesically convex and minimal subset Y subset of R-infinity(2) containing X is isometric to the tight span T(X) of X | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Academic Press Inc Elsevier Science | en_US |
dc.relation.isversionof | 10.1016/j.aim.2016.05.026 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Tight Span | en_US |
dc.subject | Hyperconvexity | en_US |
dc.subject | Injective Envelope | en_US |
dc.subject | Manhattan Plane | en_US |
dc.title | Tight span of subsets of the plane with the maximum metric | en_US |
dc.type | article | en_US |
dc.relation.journal | Advances in Mathematics | en_US |
dc.contributor.department | Anadolu Üniversitesi, Fen Fakültesi, Matematik Bölümü | en_US |
dc.identifier.volume | 301 | en_US |
dc.identifier.startpage | 693 | en_US |
dc.identifier.endpage | 710 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US] |
dc.contributor.institutionauthor | Koçak, Şahin | |