Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorÇevikalp, Hakan
dc.contributor.authorTriggs, Bill
dc.contributor.authorYavuz, Hasan Serhan
dc.contributor.authorKüçük, Yalçın
dc.contributor.authorKüçük, Mahide
dc.contributor.authorBarkana, Atalay
dc.date.accessioned2019-10-20T14:28:11Z
dc.date.available2019-10-20T14:28:11Z
dc.date.issued2010
dc.identifier.issn0925-2312
dc.identifier.urihttps://dx.doi.org/10.1016/j.neucom.2010.06.018
dc.identifier.urihttps://hdl.handle.net/11421/18042
dc.descriptionWOS: 000294092200038en_US
dc.description.abstractThis paper introduces a geometrically inspired large margin classifier that can be a better alternative to the support vector machines (SVMs) for the classification problems with limited number of training samples. In contrast to the SVM classifier, we approximate classes with affine hulls of their class samples rather than convex hulls. For any pair of classes approximated with affine hulls, we introduce two solutions to find the best separating hyperplane between them. In the first proposed formulation, we compute the closest points on the affine hulls of classes and connect these two points with a line segment. The optimal separating hyperplane between the two classes is chosen to be the hyperplane that is orthogonal to the line segment and bisects the line. The second formulation is derived by modifying the v SVM formulation. Both formulations are extended to the nonlinear case by using the kernel trick. Based on our findings, we also develop a geometric interpretation of the least squares SVM classifier and show that it is a special case of the proposed method. Multi-class classification problems are dealt with constructing and combining several binary classifiers as in SVM. The experiments on several databases show that the proposed methods work as good as the SVM classifier if not any betteren_US
dc.description.sponsorshipTurkish Academy of Sciences [TUBA-GEBIP/2010]en_US
dc.description.sponsorshipThis work was supported by the Young Scientists Award Programme (TUBA-GEBIP/2010) of the Turkish Academy of Sciences.en_US
dc.language.isoengen_US
dc.publisherElsevier Science BVen_US
dc.relation.isversionof10.1016/j.neucom.2010.06.018en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAffine Hullen_US
dc.subjectClassificationen_US
dc.subjectConvex Hullen_US
dc.subjectKernel Methodsen_US
dc.subjectLarge Margin Classifieren_US
dc.subjectQuadratic Programmingen_US
dc.subjectSupport Vector Machinesen_US
dc.titleLarge margin classifiers based on affine hullsen_US
dc.typearticleen_US
dc.relation.journalNeurocomputingen_US
dc.contributor.departmentAnadolu Üniversitesi, Fen Fakültesi, Matematik Bölümüen_US
dc.identifier.volume73en_US
dc.identifier.issue16-18en_US
dc.identifier.startpage3160en_US
dc.identifier.endpage3168en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US]
dc.contributor.institutionauthorKüçük, Yalçın
dc.contributor.institutionauthorKüçük, Mahide
dc.contributor.institutionauthorBarkana, Atalay


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster