Advanced Search

Show simple item record

dc.contributor.authorTakıl Mutlu, Figen
dc.date.accessioned2019-10-20T14:28:11Z
dc.date.available2019-10-20T14:28:11Z
dc.date.issued2016
dc.identifier.issn1726-3255
dc.identifier.urihttps://hdl.handle.net/11421/18048
dc.descriptionWOS: 000392708800006en_US
dc.description.abstractLet R be a ring and M be a right R-module. We say a submodule S of M is a (weak) Goldie-Rad-supplement of a submodule N in M, if M = N + S, (N boolean AND S <= Rad(M)) N boolean AND S <= Rad(S) and N beta**S, andM is called am ply (weakly)Goldie-Rad-supplemented if every submodule of M has ample (weak) Goldie-Rad-supplements in M. In this paper we study various properties of such modules. We show that every distributive projective weakly Goldie-Rad-Supplemented module is amply weakly Goldie-Rad-Supplemented. We also show that if M is amply (weakly) Goldie-Rad- supplemented and satisfies DCC on (weak) Goldie-Rad-supplement submodules and on small submodules, then M is Artinian.en_US
dc.description.sponsorshipAnadolu University Scientific Research Projects Commission [1505F225]en_US
dc.description.sponsorshipThis study was supported by Anadolu University Scientific Research Projects Commission under the grant no: 1505F225.en_US
dc.language.isoengen_US
dc.publisherInst Applied Mathematics & Mechanics Natl Acad Sciences Ukraineen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSupplement Submoduleen_US
dc.subjectGoldie-Rad-Supplement Submoduleen_US
dc.subjectAmply Goldie-Rad-Supplemented Moduleen_US
dc.titleAmply (weakly) Goldie-Rad-supplemented modulesen_US
dc.typearticleen_US
dc.relation.journalAlgebra & Discrete Mathematicsen_US
dc.contributor.departmentAnadolu Üniversitesi, Fen Fakültesi, Matematik Bölümüen_US
dc.identifier.volume22en_US
dc.identifier.issue1en_US
dc.identifier.startpage94en_US
dc.identifier.endpage101en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US]


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record