Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorOlgun, Şükrü
dc.contributor.authorSaltan, Mustafa
dc.date.accessioned2019-10-20T14:28:14Z
dc.date.available2019-10-20T14:28:14Z
dc.date.issued2012
dc.identifier.issn0381-7032
dc.identifier.urihttps://hdl.handle.net/11421/18064
dc.descriptionWOS: 000309784500024en_US
dc.description.abstractLet pi be a finite projective plane of order n. Consider the substructure pi(n+2) obtained from pi by removing n + 2 lines (including all points on them) no three are concurrent. In this paper, firstly, it is shown that pi(n+2) is a B - L plane and it is also homogeneous. Let PG(3, n) be a finite projective 3-space of order n. The substructure obtained from PG(3, n) by removing a tetrahedron that is four planes of PG(3, n) no three of them are collinear is a finite hyperbolic 3-space (Olgun-Ozgar [10]). Finally, we prove that any two hyperbolic planes with same parameters are isomorphic in this hyperbolic 3-space. These results are appeared in the second author's Msc thesis.en_US
dc.language.isoengen_US
dc.publisherCharles Babbage Res Ctren_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleOn Some Finite Hyperbolic Spacesen_US
dc.typearticleen_US
dc.relation.journalArs Combinatoriaen_US
dc.contributor.departmentAnadolu Üniversitesi, Fen Fakültesi, Matematik Bölümüen_US
dc.identifier.volume107en_US
dc.identifier.startpage317en_US
dc.identifier.endpage324en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US]


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster