dc.contributor.author | Olgun, Şükrü | |
dc.contributor.author | Saltan, Mustafa | |
dc.date.accessioned | 2019-10-20T14:28:14Z | |
dc.date.available | 2019-10-20T14:28:14Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 0381-7032 | |
dc.identifier.uri | https://hdl.handle.net/11421/18064 | |
dc.description | WOS: 000309784500024 | en_US |
dc.description.abstract | Let pi be a finite projective plane of order n. Consider the substructure pi(n+2) obtained from pi by removing n + 2 lines (including all points on them) no three are concurrent. In this paper, firstly, it is shown that pi(n+2) is a B - L plane and it is also homogeneous. Let PG(3, n) be a finite projective 3-space of order n. The substructure obtained from PG(3, n) by removing a tetrahedron that is four planes of PG(3, n) no three of them are collinear is a finite hyperbolic 3-space (Olgun-Ozgar [10]). Finally, we prove that any two hyperbolic planes with same parameters are isomorphic in this hyperbolic 3-space. These results are appeared in the second author's Msc thesis. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Charles Babbage Res Ctr | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.title | On Some Finite Hyperbolic Spaces | en_US |
dc.type | article | en_US |
dc.relation.journal | Ars Combinatoria | en_US |
dc.contributor.department | Anadolu Üniversitesi, Fen Fakültesi, Matematik Bölümü | en_US |
dc.identifier.volume | 107 | en_US |
dc.identifier.startpage | 317 | en_US |
dc.identifier.endpage | 324 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US] |