dc.contributor.author | Dzhafarov, Vakif | |
dc.contributor.author | Büyükköroğlu, Taner | |
dc.date.accessioned | 2019-10-20T14:28:16Z | |
dc.date.available | 2019-10-20T14:28:16Z | |
dc.date.issued | 2006 | |
dc.identifier.issn | 0024-3795 | |
dc.identifier.issn | 1873-1856 | |
dc.identifier.uri | https://dx.doi.org/10.1016/j.laa.2005.10.044 | |
dc.identifier.uri | https://hdl.handle.net/11421/18078 | |
dc.description | WOS: 000236482500015 | en_US |
dc.description.abstract | In this paper we give an alternative proof of the constant inertia theorem for convex compact sets of complex matrices. It is shown that the companion matrix whose non-trivial column is negative satisfies the directional Lyapunov condition (inclusion) for real multiplier vectors. An example of a real matrix polytope that satisfies the directional Lyapunov condition for real multiplier vectors and which has nonconstant inertia is given. A new stability criterion for convex compact sets of real Z-matrices is given. This criterion uses only real vectors and positive definite diagonal matrices | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Elsevier Science Inc | en_US |
dc.relation.isversionof | 10.1016/j.laa.2005.10.044 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Stability | en_US |
dc.subject | Constant Inertia | en_US |
dc.subject | Minimax Theorem | en_US |
dc.subject | Companion Matrix | en_US |
dc.title | On the stability of a convex set of matrices | en_US |
dc.type | article | en_US |
dc.relation.journal | Linear Algebra and Its Applications | en_US |
dc.contributor.department | Anadolu Üniversitesi, Fen Fakültesi, Matematik Bölümü | en_US |
dc.identifier.volume | 414 | en_US |
dc.identifier.issue | 2.Mar | en_US |
dc.identifier.startpage | 547 | en_US |
dc.identifier.endpage | 559 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US] |
dc.contributor.institutionauthor | Dzhafarov, Vakif | |
dc.contributor.institutionauthor | Büyükköroğlu, Taner | |