Advanced Search

Show simple item record

dc.contributor.authorDzhafarov, Vakif
dc.contributor.authorBüyükköroğlu, Taner
dc.date.accessioned2019-10-20T14:28:16Z
dc.date.available2019-10-20T14:28:16Z
dc.date.issued2006
dc.identifier.issn0024-3795
dc.identifier.issn1873-1856
dc.identifier.urihttps://dx.doi.org/10.1016/j.laa.2005.10.044
dc.identifier.urihttps://hdl.handle.net/11421/18078
dc.descriptionWOS: 000236482500015en_US
dc.description.abstractIn this paper we give an alternative proof of the constant inertia theorem for convex compact sets of complex matrices. It is shown that the companion matrix whose non-trivial column is negative satisfies the directional Lyapunov condition (inclusion) for real multiplier vectors. An example of a real matrix polytope that satisfies the directional Lyapunov condition for real multiplier vectors and which has nonconstant inertia is given. A new stability criterion for convex compact sets of real Z-matrices is given. This criterion uses only real vectors and positive definite diagonal matricesen_US
dc.language.isoengen_US
dc.publisherElsevier Science Incen_US
dc.relation.isversionof10.1016/j.laa.2005.10.044en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectStabilityen_US
dc.subjectConstant Inertiaen_US
dc.subjectMinimax Theoremen_US
dc.subjectCompanion Matrixen_US
dc.titleOn the stability of a convex set of matricesen_US
dc.typearticleen_US
dc.relation.journalLinear Algebra and Its Applicationsen_US
dc.contributor.departmentAnadolu Üniversitesi, Fen Fakültesi, Matematik Bölümüen_US
dc.identifier.volume414en_US
dc.identifier.issue2.Maren_US
dc.identifier.startpage547en_US
dc.identifier.endpage559en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US]
dc.contributor.institutionauthorDzhafarov, Vakif
dc.contributor.institutionauthorBüyükköroğlu, Taner


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record