Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorDemir, Bünyamin
dc.contributor.authorDzhafarov, Vakif
dc.contributor.authorKoçak, Şahin
dc.contributor.authorÜreyen, Mehmet
dc.date.accessioned2019-10-20T14:28:18Z
dc.date.available2019-10-20T14:28:18Z
dc.date.issued2007
dc.identifier.issn0022-247X
dc.identifier.urihttps://dx.doi.org/10.1016/j.jmaa.2006.11.025
dc.identifier.urihttps://hdl.handle.net/11421/18088
dc.descriptionWOS: 000247573200020en_US
dc.description.abstractWe give an explicit derivative computation for the restriction of a harmonic function on SG to segments at specific points of the segments: The derivative is zero at points dividing the segment in ratio 1:3. This shows that the restriction of a harmonic function to a segment of SG has the following curious property: The restriction has infinite derivatives on a dense subset of the segment (at junction points) and vanishing derivatives on another dense subseten_US
dc.language.isoengen_US
dc.publisherAcademic Press Inc Elsevier Scienceen_US
dc.relation.isversionof10.1016/j.jmaa.2006.11.025en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAnalysis On Fractalsen_US
dc.subjectSierpinski Gasketen_US
dc.subjectHarmonic Functionsen_US
dc.titleDerivatives of the restrictions of harmonic functions on the Sierpinski gasket to segmentsen_US
dc.typearticleen_US
dc.relation.journalJournal of Mathematical Analysis and Applicationsen_US
dc.contributor.departmentAnadolu Üniversitesi, Fen Fakültesi, Matematik Bölümüen_US
dc.identifier.volume333en_US
dc.identifier.issue2en_US
dc.identifier.startpage817en_US
dc.identifier.endpage822en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US]
dc.contributor.institutionauthorDemir, Bünyamin
dc.contributor.institutionauthorDzhafarov, Vakif
dc.contributor.institutionauthorKoçak, Şahin
dc.contributor.institutionauthorÜreyen, Mehmet


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster