Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorBilge, Ayşe Hümeyra
dc.contributor.authorKoçak, Şahin
dc.contributor.authorUguz, S.
dc.date.accessioned2019-10-20T14:28:23Z
dc.date.available2019-10-20T14:28:23Z
dc.date.issued2006
dc.identifier.issn0024-3795
dc.identifier.urihttps://dx.doi.org/10.1016/j.laa.2006.01.034
dc.identifier.urihttps://hdl.handle.net/11421/18116
dc.descriptionWOS: 000242744000010en_US
dc.description.abstractThe well-known classification of the Clifford algebras Cl(r, s) leads to canonical forms of complex and real representations which are essentially unique by virtue of the Wedderburn theorem. For s >= 1 representations of Cl(r, s) on R-2N are obtained from representations on R-N by adding two new generators while in passing from a representation of Cl(p, 0) on R-N to a representation of Cl(r, 0) on R-2N the number of generators that can be added is either 1, 2 or 4, according as the Clifford algebra represented on RN is of real, complex or quaternionic type. We have expressed canonical forms of these representations in terms of the complex and quaternionic structures in the half dimension and we obtained algorithms for transforming any given representation of Cl(r, s) to a canonical form. Our algorithm for the transformation of the representations of Cl(8d + c, 0), c <= 7 to canonical forms is based on finding an abelian subalgebra of Cl(8d + c, 0) and its invariant subspace. Computer programs for determining explicitly the change of basis matrix for the transformation to canonical forms are given for lower dimensions. The construction of the change of basis matrices uniquely up to the commutant provides a constructive proof of the uniqueness properties of the representations and may have applications in computer graphics and roboticsen_US
dc.language.isoengen_US
dc.publisherElsevier Science Incen_US
dc.relation.isversionof10.1016/j.laa.2006.01.034en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectClifford Algebrasen_US
dc.subjectRepresentationen_US
dc.subjectCanonical Formsen_US
dc.titleCanonical bases for real representations of Clifford algebrasen_US
dc.typearticleen_US
dc.relation.journalLinear Algebra and Its Applicationsen_US
dc.contributor.departmentAnadolu Üniversitesi, Fen Fakültesi, Matematik Bölümüen_US
dc.identifier.volume419en_US
dc.identifier.issue2.Maren_US
dc.identifier.startpage417en_US
dc.identifier.endpage439en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US]
dc.contributor.institutionauthorKoçak, Şahin


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster