Advanced Search

Show simple item record

dc.contributor.authorBilge, Ayşe Hümeyra
dc.contributor.authorDereli, Tekin
dc.contributor.authorKoçak, Şahin
dc.date.accessioned2019-10-20T14:28:23Z
dc.date.available2019-10-20T14:28:23Z
dc.date.issued1997
dc.identifier.issn0022-2488
dc.identifier.urihttps://dx.doi.org/10.1063/1.532125
dc.identifier.urihttps://hdl.handle.net/11421/18118
dc.descriptionWOS: A1997XW13200030en_US
dc.description.abstractWe show that self-dual two-forms in 2n-dimensional spaces determine a n(2)-n+1-dimensional manifold S-2n and the dimension of the maximal linear subspaces of S-2n is equal To the (Radon-Hurwitz) number of linearly independent vector fields on the sphere S2n-1. We provide a direct proof that for n odd S-2n has only one-dimensional linear submanifolds. We exhibit 2(c)-1-dimensional subspaces in dimensions which are multiples of 2(c), for c=1,2,3. In particular, we demonstrate that the seven-dimensional linear subspaces of S-8 also include among many other interesting classes of self-dual two-forms, the self-dual two-forms of Corrigan, Devchand, Fairlie, and Nuyts [Nucl. Phys. B 214, 452 (1983)] and a representation of Cl-7 given by octonionic multiplication. We discuss the relation of the Linear subspaces with the representations of Clifford algebrasen_US
dc.language.isoengen_US
dc.publisherAmer Inst Physicsen_US
dc.relation.isversionof10.1063/1.532125en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleThe geometry of self-dual two-formsen_US
dc.typearticleen_US
dc.relation.journalJournal of Mathematical Physicsen_US
dc.contributor.departmentAnadolu Üniversitesi, Fen Fakültesi, Matematik Bölümüen_US
dc.identifier.volume38en_US
dc.identifier.issue9en_US
dc.identifier.startpage4804en_US
dc.identifier.endpage4814en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US]
dc.contributor.institutionauthorKoçak, Şahin


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record