dc.contributor.author | Değirmenci, Nedim | |
dc.contributor.author | Bulut, Şenay | |
dc.date.accessioned | 2019-10-20T14:28:27Z | |
dc.date.available | 2019-10-20T14:28:27Z | |
dc.date.issued | 2010 | |
dc.identifier.issn | 1402-9251 | |
dc.identifier.uri | https://dx.doi.org/10.1142/S1402925110000568 | |
dc.identifier.uri | https://hdl.handle.net/11421/18139 | |
dc.description.abstract | It is known that the complex spin group Spin(n,C) is the universal covering group of complex orthogonal group SO(n,C). In this work we construct a new kind of spinors on some classes of Kahler-Norden manifolds. The structure group of such a Kahler-Norden manifold is SO(n,C) and has a lifting to Spin(n,C). We prove that the Levi-Civita connection on M is an SO(n,C)-connection. By using the spinor representation of the group Spin(n,C), we define the spinor bundle S on M. Then we define covariant derivative operator ? on S and study some properties of ?. Lastly we define Dirac operator on S | en_US |
dc.language.iso | eng | en_US |
dc.relation.isversionof | 10.1142/S1402925110000568 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Anti-Kahler | en_US |
dc.subject | Complex Orthogonal Group | en_US |
dc.subject | Complex Spin Group | en_US |
dc.subject | Norden Metric | en_US |
dc.subject | Spin Structure | en_US |
dc.subject | Spinor | en_US |
dc.title | Spinors on Kahler-Norden manifolds | en_US |
dc.type | article | en_US |
dc.relation.journal | Journal of Nonlinear Mathematical Physics | en_US |
dc.contributor.department | Anadolu Üniversitesi, Fen Fakültesi, Matematik Bölümü | en_US |
dc.identifier.volume | 17 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 27 | en_US |
dc.identifier.endpage | 34 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US] |
dc.contributor.institutionauthor | Değirmenci, Nedim | |
dc.contributor.institutionauthor | Bulut, Şenay | |