Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorDeniz, Ali
dc.contributor.authorKoçak, Şahin
dc.contributor.authorÖzdemir, Yunus
dc.contributor.authorÜreyen, Adem Ersin
dc.date.accessioned2019-10-20T14:28:29Z
dc.date.available2019-10-20T14:28:29Z
dc.date.issued2013
dc.identifier.issn0047-2468
dc.identifier.urihttps://dx.doi.org/10.1007/s00022-013-0164-4
dc.identifier.urihttps://hdl.handle.net/11421/18154
dc.description.abstractGraph-directed fractals are collections of metric spaces, each of which can be expressed as a union of several scaled copies of spaces from the collection. They give rise to weighted, directed graphs where the term comes from. We show in this note that any (finite) weighted, directed graph (with weights between 0 and 1) can be realized in a Euclidean space in the sense that, starting from the graph one can define a system of similitudes (with the similarity ratios being the given weights) on an appropriate Euclidean space. The point is that these maps satisfy a certain property (called the open set condition) so that the theory of Mauldin-Williams can be applied to compute the dimension of the emerging fractals. Additionally, we give a novel example of a system of graph-directed fractalsen_US
dc.language.isoengen_US
dc.relation.isversionof10.1007/s00022-013-0164-4en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGraph-Directed Fractalsen_US
dc.subjectIterated Function Systemsen_US
dc.subjectOpen Set Conditionen_US
dc.subjectWeighted Graphsen_US
dc.titleEuclidean realizations of Mauldin-Williams graphsen_US
dc.typearticleen_US
dc.relation.journalJournal of Geometryen_US
dc.contributor.departmentAnadolu Üniversitesi, Fen Fakültesi, Matematik Bölümüen_US
dc.identifier.volume104en_US
dc.identifier.issue2en_US
dc.identifier.startpage257en_US
dc.identifier.endpage263en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US]
dc.contributor.institutionauthorKoçak, Şahin
dc.contributor.institutionauthorÖzdemir, Yunus
dc.contributor.institutionauthorÜreyen, Adem Ersin


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster