Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorBaklacıoğlu, Tolga
dc.contributor.authorAydın, Hakan
dc.contributor.authorTuran, Önder
dc.date.accessioned2019-10-20T19:32:21Z
dc.date.available2019-10-20T19:32:21Z
dc.date.issued2016
dc.identifier.issn0360-5442
dc.identifier.issn1873-6785
dc.identifier.urihttps://dx.doi.org/10.1016/j.energy.2016.03.018
dc.identifier.urihttps://hdl.handle.net/11421/18443
dc.descriptionWOS: 000376800200053en_US
dc.description.abstractAn aircraft is a complex system that requires methodologies for an efficient thermodynamic design process. So, it is important to gain a deeper understanding of energy and exergy use throughout an aircraft. The aim of this study is to propose a topology improving NE (neuro-evolution) algorithm modeling for assessing energy and exergy efficiency of a cargo aircraft for the phases of a flight. In this regard, energy and exergy data of the aircraft achieved from several engine runs at different power settings have been utilized to derive the ANN (artificial neural network) models optimized by a GA (genetic algorithm). NE of feed-forward networks trained by a BP (backpropagation) algorithm with momentum has assured the accomplishment of optimum initial network weights as well as the improvement of the network topology. The linear correlation coefficients very close to unity obtained for the derived ANN models have proved the tight fitting of the real data and the estimated values of the efficiencies provided by the models. Finally, compared to the trial-and-error case, evolving the networks by GAs has enhanced the accuracy of the modeling simply further as the reduction in the MSE (mean squared errors) for the energy and exergy efficiencies indicatesen_US
dc.language.isoengen_US
dc.publisherPergamon-Elsevier Science LTDen_US
dc.relation.isversionof10.1016/j.energy.2016.03.018en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectExergyen_US
dc.subjectEnergyen_US
dc.subjectCargo Aircraften_US
dc.subjectNeuro-Evolution Algorithmen_US
dc.subjectArtificial Neural Networksen_US
dc.subjectGenetic Algorithmsen_US
dc.titleEnergetic and exergetic efficiency modeling of a cargo aircraft by a topology improving neuro-evolution algorithmen_US
dc.typearticleen_US
dc.relation.journalEnergyen_US
dc.contributor.departmentAnadolu Üniversitesi, Havacılık ve Uzay Bilimleri Fakültesien_US
dc.identifier.volume103en_US
dc.identifier.startpage630en_US
dc.identifier.endpage645en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US]
dc.contributor.institutionauthorBaklacıoğlu, Tolga
dc.contributor.institutionauthorTuran, Önder


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster