Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorBaklacıoğlu, Tolga
dc.date.accessioned2019-10-20T19:32:33Z
dc.date.available2019-10-20T19:32:33Z
dc.date.issued2016
dc.identifier.isbn9781927838242 -- 9781927838303
dc.identifier.issn1924-3642
dc.identifier.urihttps://hdl.handle.net/11421/18556
dc.descriptionAdvanced Engineering Solutions (AES)en_US
dc.description27th International Conference on Advances and Trends in Engineering Materials and their Applications, AES-ATEMA RIO-DE-JANEIRO 2016 -- 2 May 2016 through 6 May 2016 -- -- 124336en_US
dc.description.abstractA machine learning modelling approach to predict nitrogen oxides (NOx) emission was accomplished for turbofan engines of commercial aircraft during the idle condition utilizing International Civil Aviation Organization (ICAO) emission database. Being the first non-conventional emission modelling for the idle phase in the literature, the derived model relates the input parameters consisting of bypass ratio, engine pressure ratio, maximum rated thrust, and fuel flow rate of the considered turbofan engine with the output parameter, NOx emission index during the idle. Multi-layer perceptron neural networks (NNs) with one- and two-hidden-layer architectures were trained by various learning algorithms; namely, conjugate gradient, Levenberg-Marquardt, delta-bar-delta, back-propagation with momentum, and Quickprop algorithms, so as to obtain the optimal model. The estimated NOx emission index values provided a good fitting with the actual emission index values found in ICAO database while the most accurate model was achieved by the Quickprop algorithm trained two-hidden-layer NNen_US
dc.language.isoengen_US
dc.publisherAdvanced Engineering Solutionsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAircraften_US
dc.subjectEnergyen_US
dc.subjectEnvironmenten_US
dc.subjectLearning Algorithmsen_US
dc.subjectNeural Networksen_US
dc.subjectNox Emissionen_US
dc.titleA machine learning model to predict NOx emission for turbofan engines of commercial aircraft during idle conditionen_US
dc.typeconferenceObjecten_US
dc.relation.journalAES-ATEMA International Conference Series - Advances and Trends in Engineering Materials and their Applicationsen_US
dc.contributor.departmentAnadolu Üniversitesi, Havacılık ve Uzay Bilimleri Fakültesien_US
dc.identifier.volume2016-Januaryen_US
dc.identifier.startpage55en_US
dc.identifier.endpage60en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US]
dc.contributor.institutionauthorBaklacıoğlu, Tolga


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster