Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorYazar, Işıl
dc.contributor.authorŞöhret, Yasin
dc.contributor.authorKarakoç, Tahir Hikmet
dc.date.accessioned2019-10-20T19:32:47Z
dc.date.available2019-10-20T19:32:47Z
dc.date.issued2017
dc.identifier.issn1758-2083
dc.identifier.issn1758-2091
dc.identifier.urihttps://dx.doi.org/10.1504/IJGW.2017.10004843
dc.identifier.urihttps://hdl.handle.net/11421/18644
dc.descriptionWOS: 000404013300006en_US
dc.description.abstractIn this paper, comparison of estimation methods for exhaust gaseous emissions developed for a military aircraft engine via adaptive neuro-fuzzy inference system (ANFIS) structure is introduced. For system identification process, combustion efficiency, engine shaft RPM and air-fuel ratio are preferred to be system inputs to obtain emission indexes of carbon monoxide, carbon dioxide, nitrogen oxides and unburned hydrocarbon as system outputs. While comparing the estimation methodologies, two clustering methods in adaptive neuro-fuzzy inference system structure, grid partitioning and subtractive clustering, are benefited to define membership functions. Hybrid optimisation is preferred in training parts. As a conclusion remark of the present study, estimation error values of both clustering methods are found for different number of membership functions with the common training method. Nonetheless, training time saving is the advantage of subtractive clustering method in our study.en_US
dc.description.sponsorshipAnadolu and Eskisehir Osmangazi Universities of Turkeyen_US
dc.description.sponsorshipThe support provided by Anadolu and Eskisehir Osmangazi Universities of Turkey is gratefully acknowledged.en_US
dc.language.isoengen_US
dc.publisherInderscience Enterprises LTDen_US
dc.relation.isversionof10.1504/IJGW.2017.10004843en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAircraft Emissionen_US
dc.subjectAdaptive Neuro-Fuzzy Inference Systemen_US
dc.subjectAnfisen_US
dc.subjectMilitary Aircraften_US
dc.subjectModellingen_US
dc.subjectNeuro-Fuzzyen_US
dc.subjectPredictionen_US
dc.subjectTurbopropen_US
dc.titleANFIS-based comparative exhaust gases emissions prediction model of a military aircraft engineen_US
dc.typearticleen_US
dc.relation.journalInternational Journal of Global Warmingen_US
dc.contributor.departmentAnadolu Üniversitesi, Havacılık ve Uzay Bilimleri Fakültesi, Uçak Gövde Motor Bakım Bölümüen_US
dc.identifier.volume12en_US
dc.identifier.issue1en_US
dc.identifier.startpage116en_US
dc.identifier.endpage128en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US]
dc.contributor.institutionauthorKarakoç, Tahir Hikmet


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster