dc.contributor.author | Çimen, Emre | |
dc.contributor.author | Öztürk, Gürkan | |
dc.contributor.author | Gerek, Ömer Nezih | |
dc.date.accessioned | 2019-10-21T19:44:02Z | |
dc.date.available | 2019-10-21T19:44:02Z | |
dc.date.issued | 2018 | |
dc.identifier.issn | 1051-2004 | |
dc.identifier.issn | 1095-4333 | |
dc.identifier.uri | https://dx.doi.org/10.1016/j.dsp.2017.11.010 | |
dc.identifier.uri | https://hdl.handle.net/11421/19789 | |
dc.description | WOS: 000432635500014 | en_US |
dc.description.abstract | In order to cope with classification problems involving large datasets, we propose a new mathematical programming algorithm by extending the clustering based polyhedral conic functions approach. Despite the high classification efficiency of polyhedral conic functions, the realization previously required a nested implementation of k-means and conic function generation, which has a computational load related to the number of data points. In the proposed algorithm, an efficient data reduction method is employed to the k-means phase prior to the conic function generation step. The new method not only improves the computational efficiency of the successful conic function classifier, but also helps avoiding model over-fitting by giving fewer (but more representative) conic functions | en_US |
dc.description.sponsorship | Anadolu University Scientific Research Projects Commission [1506F499, 1603F122, 1605F524, 1605F435] | en_US |
dc.description.sponsorship | This paper is supported by Anadolu University Scientific Research Projects Commission, under project numbers 1506F499, 1603F122, 1605F524 and 1605F435. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Academic Press Inc Elsevier Science | en_US |
dc.relation.isversionof | 10.1016/j.dsp.2017.11.010 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Polyhedral Conic Functions | en_US |
dc.subject | Mathematical Programming | en_US |
dc.subject | Classification | en_US |
dc.subject | Machine Learning | en_US |
dc.title | Incremental conic functions algorithm for large scale classification problems | en_US |
dc.type | article | en_US |
dc.relation.journal | Digital Signal Processing | en_US |
dc.contributor.department | Anadolu Üniversitesi, Mühendislik Fakültesi | en_US |
dc.identifier.volume | 77 | en_US |
dc.identifier.startpage | 187 | en_US |
dc.identifier.endpage | 194 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US] |
dc.contributor.institutionauthor | Gerek, Ömer Nezih | |