Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorAgun, Hayri Volkan
dc.contributor.authorYılmazel, Özgür
dc.date.accessioned2019-10-21T19:44:08Z
dc.date.available2019-10-21T19:44:08Z
dc.date.issued2017
dc.identifier.isbn978-1-5386-2150-9
dc.identifier.urihttps://hdl.handle.net/11421/19814
dc.description2nd International Conference on Knowledge Engineering and Applications (ICKEA) -- OCT 21-23, 2017 -- Imperial Coll, London, ENGLANDen_US
dc.descriptionWOS: 000428208400037en_US
dc.description.abstractAuthorship attribution has been well studied in terms of text classification with many diverse feature sets. However, finding topic independent features is hard and trained models with hand crafted features in one domain may not work in another domain. In this study we used a semi supervised neural language model which is known as document embeddings for authorship attribution problem. This method showed significant improvements over bag-of-words representations in a well-known dataset.en_US
dc.description.sponsorshipIEEEen_US
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAuthorship Attributionen_US
dc.subjectDocument Embeddingsen_US
dc.subjectBag Of Words Modelen_US
dc.subjectText Classificationen_US
dc.titleDocument Embedding Approach for Efficient Authorship Attributionen_US
dc.typeconferenceObjecten_US
dc.relation.journalProceedings of 2017 2Nd International Conference On Knowledge Engineering and Applications (Ickea)en_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.startpage194en_US
dc.identifier.endpage198en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US]
dc.contributor.institutionauthorYılmazel, Özgür


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster