Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorBartos, Gaye Ediboğlu
dc.contributor.authorHajnal, Eva
dc.contributor.authorHoscan, Yaşar
dc.date.accessioned2019-10-21T19:44:14Z
dc.date.available2019-10-21T19:44:14Z
dc.date.issued2018
dc.identifier.isbn978-1-5386-4640-3
dc.identifier.urihttps://hdl.handle.net/11421/19836
dc.description12th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI) -- MAY 17-19, 2018 -- Timisoara, ROMANIAen_US
dc.descriptionWOS: 000448144200070en_US
dc.description.abstractFeature extraction is an important phase for image processing purposes since the output of the feature extraction is the input for classifiers. The importance of it applies to handwriting recognition problem, too. Distinctive features result in higher accuracy recognition of characters, or words. Therefore, it is crucial to be able to extract relevant and distinctive features from the image. In this study, we compare different feature extraction techniques for Hungarian handwriting recognition purpose. In order to be able to compare the techniques, the output of feature extraction phase is classifier using three classifiers namely, Support Vector Machines (SVM), Rough Sets Theory (RST) and Bayesian Networks (BN) using the WEKA machine learning tool. The results indicated that, the best classification results were retrieved using features calculated by the distribution of points in the image. However, it can be said that the combinations of different feature extraction types provide a greater deal of distinctiveness.en_US
dc.description.sponsorshipIEEEen_US
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleComparison of Feature Extraction Techniques for Handwriting Recognitionen_US
dc.typeconferenceObjecten_US
dc.relation.journal2018 IEEE 12th International Symposium On Applied Computational Intelligence and Informatics (Saci)en_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.startpage405en_US
dc.identifier.endpage410en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US]
dc.contributor.institutionauthorHoscan, Yaşar


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster