Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorBatmaz, Zeynep
dc.contributor.authorPolat, Hüseyin
dc.contributor.editorHowlett, RJ
dc.contributor.editorJain, LC
dc.contributor.editorGabrys, B
dc.date.accessioned2019-10-21T19:44:15Z
dc.date.available2019-10-21T19:44:15Z
dc.date.issued2016
dc.identifier.issn1877-0509
dc.identifier.urihttps://dx.doi.org/10.1016/j.procs.2016.08.091
dc.identifier.urihttps://hdl.handle.net/11421/19839
dc.description20th International Conference on Knowledge - Based and Intelligent Information and Engineering Systems (KES) -- SEP 05-07, 2016 -- York, ENGLANDen_US
dc.descriptionWOS: 000383252400004en_US
dc.description.abstractRandomization-based privacy protection methods are widely used in collaborative filtering systems to achieve individual privacy. The basic idea behind randomization utilized in collaborative filtering schemes is to add randomness to original data in such a way so that required levels of accuracy and privacy can be achieved. Although there are various studies on privacy-preserving collaborative filtering using randomization, there are no well-defined privacy-preserving frameworks for collaborative filtering algorithms based on randomization. In this paper, we present eight randomization-based privacy-preserving frameworks for privacy protection in collaborative filtering schemes. We first group privacy-preserving methods into two broad categories. We then classify them based on private data. Final grouping is done while considering varying privacy concerns of individual users. The frameworks can be chosen according to individual users' expectations and be utilized for privacy protection. The well-defined privacy-preserving frameworks form a basis for privacy protection based on randomized perturbation and randomized response techniques in collaborative filtering studies.en_US
dc.description.sponsorshipKES Inten_US
dc.language.isoengen_US
dc.publisherElsevier Science BVen_US
dc.relation.ispartofseriesProcedia Computer Science
dc.relation.isversionof10.1016/j.procs.2016.08.091en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFrameworken_US
dc.subjectPrivacyen_US
dc.subjectRandomizationen_US
dc.subjectCollaborative Filteringen_US
dc.subjectData Maskingen_US
dc.titleRandomization-based Privacy-preserving Frameworks for Collaborative Filteringen_US
dc.typeconferenceObjecten_US
dc.relation.journalKnowledge-Based and Intelligent Information & Engineering Systems: Proceedings of the 20th International Conference Kes-2016en_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.volume96en_US
dc.identifier.startpage33en_US
dc.identifier.endpage42en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US]
dc.contributor.institutionauthorBatmaz, Zeynep


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster