Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorBilge, Alper
dc.contributor.authorGüneş, İhsan
dc.contributor.authorPolat, Hüseyin
dc.date.accessioned2019-10-21T19:44:16Z
dc.date.available2019-10-21T19:44:16Z
dc.date.issued2014
dc.identifier.issn0957-4174
dc.identifier.issn1873-6793
dc.identifier.urihttps://dx.doi.org/10.1016/j.eswa.2013.11.039
dc.identifier.urihttps://hdl.handle.net/11421/19845
dc.descriptionWOS: 000331682100010en_US
dc.description.abstractPrivacy-preserving model-based recommendation methods are preferable over privacy-preserving memory-based schemes due to their online efficiency. Model-based prediction algorithms without privacy concerns have been investigated with respect to shilling attacks. Similarly, various privacy-preserving model-based recommendation techniques have been proposed to handle privacy issues. However, privacy-preserving model-based collaborative filtering schemes might be subjected to shilling or profile injection attacks. Therefore, their robustness against such attacks should be scrutinized. In this paper, we investigate robustness of four well-known privacy-preserving model-based recommendation methods against six shilling attacks. We first apply masked data-based profile injection attacks to privacy-preserving k-means-, discrete wavelet transform-, singular value decomposition-, and item-based prediction algorithms. We then perform comprehensive experiments using real data to evaluate their robustness against profile injection attacks. Next, we compare non-private model-based methods with their privacy-preserving correspondences in terms of robustness. Moreover, well-known privacy-preserving memory- and model-based prediction methods are compared with respect to robustness against shilling attacks. Our empirical analysis show that couple of model-based schemes with privacy are very robusten_US
dc.description.sponsorshipTUBITAK [111E218]en_US
dc.description.sponsorshipThis work is supported by TUBITAK, under grant 111E218.en_US
dc.language.isoengen_US
dc.publisherPergamon-Elsevier Science LTDen_US
dc.relation.isversionof10.1016/j.eswa.2013.11.039en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectRobustnessen_US
dc.subjectShillingen_US
dc.subjectPrivacyen_US
dc.subjectRecommendationen_US
dc.subjectModelen_US
dc.subjectCollaborative Filteringen_US
dc.titleRobustness analysis of privacy-preserving model-based recommendation schemesen_US
dc.typearticleen_US
dc.relation.journalExpert Systems With Applicationsen_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.volume41en_US
dc.identifier.issue8en_US
dc.identifier.startpage3671en_US
dc.identifier.endpage3681en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US]
dc.contributor.institutionauthorBilge, Alper


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster