Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorBilge, Alper
dc.contributor.authorÖzdemir, Zeynep
dc.contributor.authorPolat, Hüseyin
dc.contributor.editorShi, Y
dc.contributor.editorLepskiy, A
dc.contributor.editorAleskerov, F
dc.date.accessioned2019-10-21T19:44:18Z
dc.date.available2019-10-21T19:44:18Z
dc.date.issued2014
dc.identifier.issn1877-0509
dc.identifier.urihttps://dx.doi.org/10.1016/j.procs.2014.05.257
dc.identifier.urihttps://hdl.handle.net/11421/19849
dc.description2nd International Conference on Information Technology and Quantitative Management (ITQM) -- JUN 03-05, 2014 -- Natl Res Univ, Higher Sch Econ, Moscow, RUSSIAen_US
dc.descriptionWOS: 000360713800019en_US
dc.description.abstractRecommender systems provide an impressive way to overcome information overload problem. However, they are vulnerable to profile injection or shilling attacks. Malicious users and/or parties might construct fake profiles and inject them into user-item databases to increase or decrease the popularity of some target products. Hence, they may have an effective impact on produced predictions. To eliminate such malicious impact, detecting shilling profiles becomes imperative. In this work, we propose a novel shilling attack detection method for particularly specific attacks based on bisecting k-means clustering approach, which provides that attack profiles are gathered in a leaf node of a binary decision tree. After evaluating our method, we perform experiments using a benchmark data set to analyze it with respect to success of attack detection. Our empirical outcomes show that the method is extremely successful on detecting specific attack profiles like bandwagon, segment, and average attack.en_US
dc.description.sponsorshipInt Acad Informat Technol & Quantitat Management, Yandex LLC, Chinese Acad Sci, Res Ctr Fictitious Econ & Data Sci, Univ Nebraska Omaha, Global Act Inc, CurrexSoleen_US
dc.language.isoengen_US
dc.publisherElsevier Science BVen_US
dc.relation.ispartofseriesProcedia Computer Science
dc.relation.isversionof10.1016/j.procs.2014.05.257en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDetectionen_US
dc.subjectShilling Attacksen_US
dc.subjectBisecting Clusteringen_US
dc.subjectRecommender Systemsen_US
dc.subjectAccuracyen_US
dc.titleA novel shilling attack detection methoden_US
dc.typeconferenceObjecten_US
dc.relation.journal2Nd International Conference On Information Technology and Quantitative Management, Itqm 2014en_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.volume31en_US
dc.identifier.startpage165en_US
dc.identifier.endpage174en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US]
dc.contributor.institutionauthorBilge, Alper


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster