Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorBilge, Alper
dc.contributor.authorPolat, Hüseyin
dc.date.accessioned2019-10-21T19:44:19Z
dc.date.available2019-10-21T19:44:19Z
dc.date.issued2013
dc.identifier.issn0306-4573
dc.identifier.issn1873-5371
dc.identifier.urihttps://dx.doi.org/10.1016/j.ipm.2013.02.004
dc.identifier.urihttps://hdl.handle.net/11421/19853
dc.descriptionWOS: 000319543800014en_US
dc.description.abstractPrivacy-preserving collaborative filtering is an emerging web-adaptation tool to cope with information overload problem without jeopardizing individuals' privacy. However, collaborative filtering with privacy schemes commonly suffer from scalability and sparseness as the content in the domain proliferates. Moreover, applying privacy measures causes a distortion in collected data, which in turn defects accuracy of such systems. In this work, we propose a novel privacy-preserving collaborative filtering scheme based on bisecting k-means clustering in which we apply two preprocessing methods. The first preprocessing scheme deals with scalability problem by constructing a binary decision tree through a bisecting k-means clustering approach while the second produces clones of users by inserting pseudo-self-predictions into original user profiles to boost accuracy of scalability-enhanced structure. Sparse nature of collections are handled by transforming ratings into item features-based profiles. After analyzing our scheme with respect to privacy and supplementary costs, we perform experiments on benchmark data sets to evaluate it in terms of accuracy and online performance. Our empirical outcomes verify that combined effects of the proposed preprocessing schemes relieve scalability and augment accuracy significantlyen_US
dc.description.sponsorshipTUBITAK [108E221]en_US
dc.description.sponsorshipThis work is supported by TUBITAK under Grant 108E221.en_US
dc.language.isoengen_US
dc.publisherElsevier Sci LTDen_US
dc.relation.isversionof10.1016/j.ipm.2013.02.004en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAccuracyen_US
dc.subjectBinary Decision Diagramsen_US
dc.subjectClustering Methodsen_US
dc.subjectData Preprocessingen_US
dc.subjectData Privacyen_US
dc.subjectRecommender Systemsen_US
dc.titleA scalable privacy-preserving recommendation scheme via bisecting k-means clusteringen_US
dc.typearticleen_US
dc.relation.journalInformation Processing & Managementen_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.volume49en_US
dc.identifier.issue4en_US
dc.identifier.startpage912en_US
dc.identifier.endpage927en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US]
dc.contributor.institutionauthorBilge, Alper


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster