Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorBozkurt Keser, Sinem
dc.contributor.authorYazıcı, Ahmet
dc.contributor.authorGünal, Serkan
dc.date.accessioned2019-10-21T19:44:20Z
dc.date.available2019-10-21T19:44:20Z
dc.date.issued2017
dc.identifier.isbn978-1-5090-6494-6
dc.identifier.issn2165-0608
dc.identifier.urihttps://hdl.handle.net/11421/19859
dc.description25th Signal Processing and Communications Applications Conference (SIU) -- MAY 15-18, 2017 -- Antalya, TURKEYen_US
dc.descriptionWOS: 000413813100025en_US
dc.description.abstractThough global positioning system is a well-accepted technology for outdoor positioning, it is ineffective for indoor environment. Therefore, the search for effective and cheap solutions still continues. In this work, it is aimed to enhance the performance of indoor positioning system by a hybrid approach integrating WiFi and magnetic field sensor data. The positioning accuracy is improved by taking advantages of these sensor types. Besides, significant improvements in terms of computation time are achieved thanks to 'ReliefF' feature selection and 'k-means' clustering algorithms employed within the work. The results of the tests, which are obtained using Extreme Learning Machine models constituted for each region acquired after clustering, approves the effectiveness of the proposed method.en_US
dc.description.sponsorshipTurk Telekom, Arcelik A S, Aselsan, ARGENIT, HAVELSAN, NETAS, Adresgezgini, IEEE Turkey Sect, AVCR Informat Technologies, Cisco, i2i Syst, Integrated Syst & Syst Design, ENOVAS, FiGES Engn, MS Spektral, Istanbul Teknik Univen_US
dc.language.isoturen_US
dc.publisherIEEEen_US
dc.relation.ispartofseriesSignal Processing and Communications Applications Conference
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectIndoor Positioningen_US
dc.subjectFingerprint Based Positioningen_US
dc.subjectWifien_US
dc.subjectMagnetic Fielden_US
dc.subjectFeature Selectionen_US
dc.subjectClusteringen_US
dc.subjectClassificationen_US
dc.titleA Hybrid Fingerprint Based Indoor Positioning with Extreme Learning Machineen_US
dc.typeconferenceObjecten_US
dc.relation.journal2017 25th Signal Processing and Communications Applications Conference (Siu)en_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US]
dc.contributor.institutionauthorGünal, Serkan


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster