Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorErgür, H. Sevil
dc.contributor.authorOysal, Yusuf
dc.date.accessioned2019-10-21T19:44:29Z
dc.date.available2019-10-21T19:44:29Z
dc.date.issued2015
dc.identifier.issn0956-5515
dc.identifier.issn1572-8145
dc.identifier.urihttps://dx.doi.org/10.1007/s10845-013-0798-y
dc.identifier.urihttps://hdl.handle.net/11421/19888
dc.descriptionWOS: 000351138700015en_US
dc.description.abstractAbrasive water jet cutting has been proven to be an effective technology for processing various engineering materials. To determine the optimal jet traverse rate (cutting speed) in abrasive water jet cutting is not very easy. This paper presents the application of an adaptive wavelet network (AWN) for overcoming this prediction problem. In this work, we consider some parameters such as change of focusing nozzle diameter, abrasive flow rate, jet pressure and depth of cut in order to control the abrasive water jet cutting process. The AWN model is adopted from an adaptable neuro-fuzzy inference system which is a Sugeno type fuzzy system that puts in the framework of this kind of systems to facilitate learning and adaptation. For model accuracy, we present to train an AWN by a hybrid learning method through a least square estimation with gradient based optimization algorithm to obtain the optimal translation and dilation parameters of the AWN. The effectiveness of the proposed approach is evaluated by the experimental data to estimate the cutting speeds for titanium and the model data is compared with the desired results. The predicted results indicated that the model can be used to identify jet traverse rates with an acceptable range of application for smooth cutting.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.relation.isversionof10.1007/s10845-013-0798-yen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAwj Cuttingen_US
dc.subjectJet Traverse Rateen_US
dc.subjectAnfisen_US
dc.subjectWaveleten_US
dc.subjectNeural Networken_US
dc.subjectModeling Predictionen_US
dc.titleEstimation of cutting speed in abrasive water jet using an adaptive wavelet neural networken_US
dc.typearticleen_US
dc.relation.journalJournal of Intelligent Manufacturingen_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.volume26en_US
dc.identifier.issue2en_US
dc.identifier.startpage403en_US
dc.identifier.endpage413en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US]
dc.contributor.institutionauthorOysal, Yusuf


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster