Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorPak, Muhammet Yasin
dc.contributor.authorGünal, Serkan
dc.date.accessioned2019-10-21T19:44:29Z
dc.date.available2019-10-21T19:44:29Z
dc.date.issued2016
dc.identifier.issn1392-1215
dc.identifier.urihttps://dx.doi.org/10.5755/j01.eie.22.2.14599
dc.identifier.urihttps://hdl.handle.net/11421/19890
dc.descriptionWOS: 000377541700017en_US
dc.description.abstractSentiment classification has received increasing attention in recent years. Supervised learning methods for sentiment classification require considerable amount of labeled data for training purposes. As the number of domains increases, the task of collecting data becomes impractical. Therefore, domain adaptation techniques are employed. However, most of the studies dealing with the domain adaptation problem demand a few amount of labeled data or lots of unlabeled data belonging to the target domain, which may not be always possible. In this work, a novel method for sentiment classification, which does not require labeled and/or unlabeled data from the target domain, is proposed. The propose method mainly consists of two stages. At first, the target domain is predicted even if it is not among the source domains in hand. Then, sentiment is classified as either positive or negative using the sentiment classifier specifically trained for the predicted domain. Extensive experimental analysis on two different datasets with distinct languages and domains verifies that the proposed method is superior to the domain independent sentiment classification approach at each case considered.en_US
dc.language.isoengen_US
dc.publisherKaunas University Technologyen_US
dc.relation.isversionof10.5755/j01.eie.22.2.14599en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSentiment Analysisen_US
dc.subjectSentiment Classificationen_US
dc.subjectText Classificationen_US
dc.subjectDomain Adaptationen_US
dc.titleSentiment Classification based on Domain Predictionen_US
dc.typearticleen_US
dc.relation.journalElektronika Ir Elektrotechnikaen_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.volume22en_US
dc.identifier.issue2en_US
dc.identifier.startpage96en_US
dc.identifier.endpage99en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US]
dc.contributor.institutionauthorGünal, Serkan


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster